
Homework 2 Solutions
Csc 4330/6330, Spring 2018

1. Prove that the following grammars are ambiguous (Note:In the following grammars, we have two
terminal symbols, 'a' and 'b' and all non-terminal symbols are in upper-case letters, such as 'A'
and 'S'. 'S' is the start symbol and ε is the empty string.):

Grammar G1
S -> SS
S -> ab
S -> ba
S -> ε

 w = ab
 S => ab
 S => SS => abS => ab

Grammar G2
S -> AabaA
A -> aA
A -> bA
A -> ε

 w = ababa
 S => AabaA => abaA => ababA => ababaA => ababa
 S => AabaA => Aaba => aAaba => abAaba => ababa

Grammar G3
S -> aSb
S -> bSa
S -> SS
S -> ε

 w = abab
 S => aSb => abSab => abab
 S => SS => aSbS => aSbaSb => abaSb => abab

2. Consider the following grammar:

S -> aScB | A | b
A -> cA | c
B -> A | d

Here again, we assume lower-case symbols such as a,b,c,d are terminals and upper-case
symbols S, A, and B are non-terminals and S is the start symbol. Which of the following sentences are
in the language generated by the grammar:

1. abcd

 Yes
 S => aScB => abcB => abcd

2. acccbd

No
S => aScB must be the first rule applied to generate the leading 'a' and to generate the trailing 'd',
B => d must be applied to get aScd which means that the last 'd' cannot be preceded by a 'b'

3. accbcc

No
S => aScB must be the first rule applied to generate the leading 'a'. Now if S is used to generate
the second 'c', the 'b' cannot be generated and if S is used to generate the b then no 'c's can be
generated between 'a' and 'b'.

4. acd

No;
S => aScB must be the first rule applied to generate the leading 'a'. Now S does not derive the
empty string and therefore some non-empty string must appear between 'a' and 'c'; hence "acd"
cannot be derived.

5. accc

Yes;
S => aScB => aAcB => accB => accA => accc

3. Write ANTLR4 grammar and lexer rules for "Datalog Rules". A Datalog rule is of the form:

 p :- q1, ..., qn.

where n>0 and p, q1, ..., and qn are atomic formulas of the form:

 r(x1, ..., xm)

where m>0 and r is a relation name and x1 , ..., xm are either numbers or variables. Relation
names and variables are made up of alphabetic letters or digits and start with a lower-case
alphabetic letter. Numbers are positive integers or zero very much like numbers in the WAE
example. Some examples of Datalog rules are:

ancestor(x1,y1) :- parent(x1,y1).
teaches(tno,cno) :- faculty(tno), course(cno), assigned(tno,cno).
p(x,y) :- q(2,x), r(y,45,z), s(a,b,22).

Put the grammar in a file, DLG.g4 and test it out.

grammar DLG;

dlog : relation IF body PERIOD;
relation : ID LPAREN args RPAREN;
args : arg | arg COMMA args;
arg : NUMBER | ID;
body : relation | relation COMMA body;

fragment VALID_ID_START : ('a'..'z');
fragment VALID_ID_CHAR : ('a'..'z') | ('A'..'Z') | ('0'..'9');
NUMBER : ('0'..'9')+;
LPAREN : '(';
RPAREN : ')';
PERIOD : '.';
COMMA : ',';
IF : ':-';
ID : VALID_ID_START VALID_ID_CHAR*;
WS : [\r\n\t]+ -> skip;

4. Write a grammar for the language consisting of strings that have n copies of the letter a followed
by the same number of copies of the letter b. For example, the strings ab, aaabbb,
and aaaaabbbbb are in the language but aaabb, bbaa, and aba are not. Draw the parse tree
for aaabbb.

S -> aSb | epsilon

S => aSb => aaSbb => aaaSbbb => aaabbb

 S
 /|\
 a S b
 /|\
 a S b
 /|\
 a S b
 |

