
CSc 4330/6330 3-1 9/15
Programming Language Concepts

3. DESCRIBING SYNTAX AND SEMANTICS

CSc 4330/6330 3-2 9/15
Programming Language Concepts

Introduction

• The task of providing a concise yet understandable description of a program-
ming language is difficult but essential to the language’s success.

• A language description needs to be useful to both programmers and language
implementors.

• A language description must cover two aspects of the language:

Syntax: the form of its expressions, statements, and program units
Semantics: the meaning of those expressions, statements, and program units

• Syntax of Java’s while statement:

while (boolean_expr) statement

Semantics: If the Boolean expression is true, the embedded statement is exe-
cuted. Control then returns to the expression to repeat the process. If the expres-
sion is false, control is transferred to the statement following the while.

• In a well-designed programming language, semantics should follow directly
from syntax.

• Describing syntax is easier than describing semantics.

CSc 4330/6330 3-3 9/15
Programming Language Concepts

The General Problem of Describing Syntax

• A language, whether natural or artificial, is a set of strings of characters from
some alphabet.

The strings of a language are called sentences or statements.
The syntax rules of a language specify which strings of characters from the lan-

guage’s alphabet are in the language.

• Formal descriptions of programming language syntax do not always include the
lowest-level syntactic units (lexemes). Lexemes include identifiers, literals,
operators, and special words, among others.

• A token of a language is a category of its lexemes.

• An example Java statement:

index = 2 * count + 17;

Lexemes and tokens of this statement:

Lexemes Tokens
index identifier
= equal_sign
2 int_literal
* mult_op
count identifier
+ plus_op
17 int_literal
; semicolon

CSc 4330/6330 3-4 9/15
Programming Language Concepts

Language Recognizers and Generators

• In general, languages can be formally defined in two distinct ways: by recogni-
tion and by generation.

• A recognizer R for a language L would be given a string of characters. R would
then indicate whether or not the string belonged to L. Such a recognizer would
serve as a description of L.

• The syntax analysis part of a compiler is a recognizer for the language the com-
piler translates.

• A language generator is a device that can be used to generate the sentences of a
language. Like a recognizer, a generator is also a description of a language.

• Generators are usually easier to understand than recognizers. It is often possible
to determine whether a particular sentence is correct by comparing it with the
structure of the generator.

• There is a close connection between formal generation and recognition devices
for the same language.

CSc 4330/6330 3-5 9/15
Programming Language Concepts

Backus-Naur Form and Context-Free Grammars

• John Backus and Noam Chomsky separately invented a notation that has
become the most widely used method for formally describing programming lan-
guage syntax.

• In the mid-1950s, Chomsky, a noted linguist, described four classes of genera-
tive devices or grammars that define four classes of languages. Two of these
classes are useful for describing the syntax of programming languages:

Regular grammars—Can describe the appearance of tokens of programming lan-
guages.

Context-free grammars—Can describe the syntax of whole programming lan-
guages, with minor exceptions.

• In 1959, John Backus published a similar notation for specifying programming
language syntax.

• Backus’s notation was later modified slightly by Peter Naur for the description
of ALGOL 60. This revised notation became known as Backus-Naur form, or
simply BNF.

• BNF is nearly identical to Chomsky’s context-free grammars, so the terms are
often used interchangeably.

CSc 4330/6330 3-6 9/15
Programming Language Concepts

Fundamentals of BNF

• A metalanguage is a language that is used to describe another language. BNF is
a metalanguage for programming languages.

• BNF uses abstractions for syntactic structures. A simple Java assignment, for
example, might be represented by the abstraction <assign>. The definition of
<assign> is given by a rule or production:

<assign> → <var> = <expression>

• Each rule has a left-hand side (LHS) and a right-hand side (RHS). The LHS is
the abstraction being defined. The RHS consists of tokens, lexemes, and refer-
ences to other abstractions.

• Abstractions are called nonterminal symbols, or simply nonterminals.

• Lexemes and tokens are called terminal symbols, or simply terminals.

• A BNF description, or grammar, is a collection of rules.

CSc 4330/6330 3-7 9/15
Programming Language Concepts

Fundamentals of BNF (Continued)

• Nonterminal symbols can have more than one definition. Multiple definitions
can be written as a single rule, with the definitions separated by the symbol |.

• Java’s if statement can be described with two rules:

<if_stmt> → if (<logic_expr>) <stmt>
<if_stmt> → if (<logic_expr>) <stmt> else <stmt>

or with one rule:

<if_stmt> → if (<logic_expr>) <stmt>
 | if (<logic_expr>) <stmt> else <stmt>

• A rule is recursive if its LHS appears in its RHS. Recursion is often used when
a nonterminal represents a variable-length list of items.

• The following rule describes a list of identifiers separated by commas:

<ident_list> → identifier
 | identifier , <ident_list>

CSc 4330/6330 3-8 9/15
Programming Language Concepts

Grammars and Derivations

• A grammar is a generative device for defining languages.

• The sentences of a language are generated through a sequence of applications of
the rules, beginning with a special nonterminal called the start symbol. In a pro-
gramming language grammar, the start symbol is often named <program>.

• This sequence of rule applications is called a derivation.

• A grammar for a small language:

<program> → begin <stmt_list> end
<stmt_list> → <stmt>
 | <stmt> ; <stmt_list>
<stmt> → <var> = <expression>
<var> → A | B | C
<expression> → <var> + <var>
 | <var> - <var>
 | <var>

• A derivation of a program in this language:

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> begin A = B + <var> ; <stmt_list> end
=> begin A = B + C ; <stmt_list> end
=> begin A = B + C ; <stmt> end
=> begin A = B + C ; <var> = <expression> end
=> begin A = B + C ; B = <expression> end
=> begin A = B + C ; B = <var> end
=> begin A = B + C ; B = C end

• In a derivation, each successive string is derived from the previous string by
replacing one of the nonterminals with one of that nonterminal’s definitions.

CSc 4330/6330 3-9 9/15
Programming Language Concepts

Grammars and Derivations (Continued)

• Each string in a derivation, including the start symbol, is called a sentential
form.

• A derivation continues until the sentential form contains no nonterminals.

• A leftmost derivation is one in which the replaced nonterminal is always the
leftmost nonterminal. In addition to leftmost, a derivation may be rightmost or in
an order that is neither leftmost nor rightmost.

• Derivation order has no effect on the language generated by a grammar.

• By choosing alternative rules with which to replace nonterminals in the deriva-
tion, different sentences in the language can be generated. By exhaustively
choosing all combinations of choices, the entire language can be generated.

• A grammar for simple assignment statements:

<assign> → <id> = <expr>
<id> → A | B | C
<expr> → <id> + <expr>
 | <id> * <expr>
 | (<expr>)
 | <id>

• A leftmost derivation of the statement A = B * (A + C):

<assign> => <id> = <expr>
=> A = <expr>
=> A = <id> * <expr>
=> A = B * <expr>
=> A = B * (<expr>)
=> A = B * (<id> + <expr>)
=> A = B * (A+ <expr>)
=> A = B * (A + <id>)
=> A = B * (A + C)

CSc 4330/6330 3-10 9/15
Programming Language Concepts

Parse Trees

• A derivation can be represented graphically in the form of a parse tree.

• The following parse tree shows the structure of the statement

A = B * (A + C)

• Every internal node of a parse tree is labeled with a nonterminal symbol; every
leaf is labeled with a terminal symbol.

=

CSc 4330/6330 3-11 9/15
Programming Language Concepts

Ambiguity

• A grammar that generates a sentence for which there are two or more distinct
parse trees is said to be ambiguous.

• An ambiguous grammar for simple assignment statements:

<assign> → <id> = <expr>
<id> → A | B | C
<expr> → <expr> + <expr>
 | <expr> * <expr>
 | (<expr>)
 | <id>

• This grammar is ambiguous because the sentence

A = B + C * A

has two distinct parse trees:

• Syntactic ambiguity is a problem because compilers often base the semantics of
those structures on their syntactic form. If a language structure has more than
one parse tree, then the meaning of the structure cannot be determined uniquely.

= =

CSc 4330/6330 3-12 9/15
Programming Language Concepts

Operator Precedence

• Ambiguity in an expression grammar can often be resolved by rewriting the
grammar to reflect operator precedence. This process involves additional nonter-
minals and some new rules.

• An unambiguous grammar for simple assignment statements:

<assign> → <id> = <expr>
<id> → A | B | C
<expr> → <expr> + <term>
 | < term>
<term> → <term> * <factor>
 | <factor>
<factor> → (<expr>)
 | <id>

• The following derivation of the sentence A = B + C * A uses the unambiguous
grammar:

<assign> => <id> = <expr>
=> A = <expr>
=> A = <expr> + <term>
=> A = <term> + <term>
=> A = <factor> + <term>
=> A = <id> + <term>
=> A = B + <term>
=> A = B + <term> * <factor>
=> A = B + <factor> * <factor>
=> A = B + <id> * <factor>
=> A = B + C * <factor>
=> A = B + C * <id>
=> A = B + C * A

CSc 4330/6330 3-13 9/15
Programming Language Concepts

Operator Precedence (Continued)

• The sentence A = B + C * A now has a unique parse tree:

=

CSc 4330/6330 3-14 9/15
Programming Language Concepts

Operator Precedence (Continued)

• The connection between parse trees and derivations is very close; either can eas-
ily be constructed from the other.

• Every derivation with an unambiguous grammar has a unique parse tree,
although that tree can be represented by different derivations.

• For example, the following derivation of the sentence A = B + C * A is different
from the derivation of the same sentence given previously.

<assign> => <id> = <expr>
=> <id> = <expr> + <term>
=> <id> = <expr> + <term> * <factor>
=> <id> = <expr> + <term> * <id>
=> <id> = <expr> + <term> * A
=> <id> = <expr> + <factor> * A
=> <id> = <expr> + <id> * A
=> <id> = <expr> + C * A
=> <id> = <term> + C * A
=> <id> = <factor> + C * A
=> <id> = <id> + C * A
=> <id> = B + C * A
=> A = B + C * A

This is a rightmost derivation, whereas the previous one is leftmost. Both deriva-
tions, however, are represented by the same parse tree.

CSc 4330/6330 3-15 9/15
Programming Language Concepts

Associativity of Operators

• A grammar that describes expressions needs to handle associativity correctly.

• The parse tree for A = B + C + A illustrates this issue:

• The parse tree shows the left addition operator lower than the right addition
operator. This is the correct order if addition is meant to be left associative.

=

CSc 4330/6330 3-16 9/15
Programming Language Concepts

Associativity of Operators (Continued)

• When a BNF rule has its LHS also appearing at the beginning of its RHS, the
rule is said to be left recursive. Left recursion corresponds to left associativity.

• To indicate right associativity, right recursion can be used. A grammar rule is
right recursive if the LHS appears at the right end of the RHS.

• Rules to describe exponentiation as a right-associative operator:

<factor> → <exp> ** <factor>
 | <exp>
<exp> → (<expr>)
 | id

CSc 4330/6330 3-17 9/15
Programming Language Concepts

An Unambiguous Grammar for if-else

• BNF rules for the Java if statement:

<if_stmt> → if (<logic_expr>) <stmt>
 | if (<logic_expr>) <stmt> else <stmt>

• If <stmt> → <if_stmt> is also a rule, this grammar is ambiguous. The simplest
sentential form that illustrates this ambiguity is

if (<logic_expr>) if (<logic_expr>) <stmt> else <stmt>

The following parse trees show the ambiguity of this sentential form:

CSc 4330/6330 3-18 9/15
Programming Language Concepts

An Unambiguous Grammar for if-else (Continued)

• The rule for if constructs in most languages is that an else clause is matched
with the nearest previous unmatched if.

• Therefore, between an if and its matching else, there cannot be an if state-
ment without an else (an “unmatched” statement).

• To make the grammar unambiguous, two new nonterminals are added, repre-
senting matched statements and unmatched statements:

<stmt> → <matched> | <unmatched>
<matched> → if (<logic_expr>) <matched> else <matched>
 | any non-if statement
<unmatched> → if (<logic_expr>) <stmt>
 | if (<logic_expr>) <matched> else <unmatched>

CSc 4330/6330 3-19 9/15
Programming Language Concepts

Extended BNF

• Because of minor inconveniences in BNF, it has been extended in several ways.
These extensions do not enhance the descriptive power of BNF.

• Most extended versions are called Extended BNF, or simply EBNF, even though
they are not all exactly the same.

• Three extensions are commonly included in EBNF.

Square brackets:

<if_stmt> → if (<expression>) <statement> [else <statement>]

Curly braces:

<ident_list> → <identifier> {, <identifier>}

Parentheses:

<term> → <term> (* | / | %) <factor>

• The brackets, braces, and parentheses are metasymbols. In cases where these
metasymbols are also terminal symbols in the language being described, the in-
stances that are terminal symbols can be underlined or quoted.

CSc 4330/6330 3-20 9/15
Programming Language Concepts

Extended BNF (Continued)

• BNF and EBNF versions of an expression grammar:

BNF: <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
<term> → <term> * <factor>
 | <term> / <factor>
 | <factor>
<factor> → <exp> ** <factor>
 | <exp>
<exp> → (<expr>)
 | id

EBNF: <expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → <exp> {** <exp>}
<exp> → (<expr>)
 | id

• Although EBNF is more concise than BNF, it does not convey as much informa-
tion. For example, the BNF rule

<expr> → <expr> + <term>

forces the + operator to be left associative, whereas the EBNF rule

<expr> → <term> {+ <term>}

does not.

• Some versions of EBNF allow a numeric superscript to be attached to the right
brace to indicate an upper limit to the number of times the enclosed part can be
repeated.

• Some versions use a plus (+) superscript to indicate one or more repetitions:

<compound> → begin {<stmt>}+ end

CSc 4330/6330 3-21 9/15
Programming Language Concepts

Extended BNF (Continued)

• A different version of EBNF is often used for describing the syntax of C-like
languages.

• Nonterminals are not enclosed in brackets.

• A colon is used instead of an arrow, and the RHS of a rule is placed on the next
line.

• Alternative RHSs are placed on separate lines (vertical bars are not used).

• The subscript opt is used to indicate an optional part of an RHS:

ConstructorDeclarator:
 SimpleName (FormalParameterListopt)

• Alternative RHSs can also be indicated by the using the words “one of”:

AssignmentOperator: one of
 = *= /= %= += -= <<= >>= >>>= &= ^= |=

CSc 4330/6330 3-22 9/15
Programming Language Concepts

Grammars and Recognizers

• Given a context-free grammar, a recognizer for the language generated by the
grammar can be algorithmically constructed.

• A number of software systems have been developed that perform this construc-
tion. yacc (yet another compiler-compiler) was one of the first.

CSc 4330/6330 3-23 9/15
Programming Language Concepts

Attribute Grammars

• An attribute grammar can be used to describe more of the structure of a pro-
gramming language than is possible with a context-free grammar.

• Attribute grammars are useful because some language rules (such as type com-
patibility) are difficult to specify with BNF.

• Other language rules cannot be specified in BNF at all, such as the rule that all
variables must be declared before they are referenced.

• Rules such as these are considered to be part of the static semantics of a lan-
guage, not part of the language’s syntax. The term “static” indicates that these
rules can be checked at compile time.

• Attribute grammars, designed by Donald Knuth, can describe both syntax and
static semantics.

• Attribute grammars are context-free grammars to which the following have been
added:

Attributes are properties that can have values assigned to them.
Attribute computation functions (semantic functions) specify how attribute

values are computed.
Predicate functions state the static semantic rules of the language.

CSc 4330/6330 3-24 9/15
Programming Language Concepts

Attribute Grammars Defined

• An attribute grammar is a grammar with the following additional features:

A set of attributes A(X) for each grammar symbol X.
A set of semantic functions and a possibly empty set of predicate functions for

each grammar rule.

• A(X) consists of two disjoint sets S(X) and I(X), called synthesized and inher-
ited attributes, respectively.

Synthesized attributes are used to pass semantic information up a parse tree.
Inherited attributes pass semantic information down and across a tree.

• For a rule X0 → X1…Xn, the synthesized attributes of X0 are computed with
semantic functions of the form S(X0) = f(A(X1),…,A(Xn)).

• Inherited attributes of symbols Xj, 1 ≤ j ≤ n (in the rule X0 → X1…Xn), are com-
puted with a semantic function of the form I(Xj) = f(A(X0),…,A(Xn)).

To avoid circularity, inherited attributes are often restricted to functions of the
form I(Xj) = f(A(X0),…,A(Xj–1)).

• A predicate function is a Boolean expression on the union of the attribute set
{A(X0),…,A(Xn)} and a set of literal attribute values. A derivation is allowed to
continue only if every predicate associated with every nonterminal is true.

• A parse tree of an attribute grammar is the parse tree based on its underlying
BNF grammar, with a possibly empty set of attribute values attached to each
node.

• If all the attribute values in a parse tree have been computed, the tree is said to be
fully attributed.

CSc 4330/6330 3-25 9/15
Programming Language Concepts

Intrinsic Attributes

• Intrinsic attributes are synthesized attributes of leaf nodes whose values are
determined outside the parse tree (perhaps coming from the compiler’s symbol
table).

• Initially, the only attributes with values are the intrinsic attributes of the leaf
nodes. The semantic functions can then be used to compute the remaining
attribute values.

CSc 4330/6330 3-26 9/15
Programming Language Concepts

Examples of Attribute Grammars

• The following fragment of an attribute grammar describes the rule that the name
on the end of an Ada procedure must match the procedure’s name:

Syntax rule: <proc_def> → procedure <proc_name>[1]
 <proc_body> end <proc_name>[2] ;
Predicate: <proc_name>[1].string == <proc_name>[2].string

Nonterminals that appear more than once in a rule are subscripted to distinguish
them.

• An attribute grammar can be used to check the type rules of a simple assignment
statement with the following syntax and semantics:

The only variable names are A, B, and C.
The right side of an assignment can be a variable or the sum of two variables.
Variables are either int or real.
Variables that are added need not have the same type. If the types are different,

the result has type real.
The variable on the left side of an assignment must have the same type as the

expression on the right side.

• Syntax portion of attribute grammar for simple assignment statements:

<assign> → <var> = <expr>
<expr> → <var> + <var>
 | <var>
<var> → A | B | C

• Attributes for nonterminals in the grammar:

actual_type—A synthesized attribute associated with the nonterminals <var>
and <expr>. Stores the actual type (int or real) of a variable or expression. In
the case of a variable, the actual type is intrinsic.

expected_type—An inherited attribute associated with the nonterminal <expr>.
Stores the type expected for the expression.

CSc 4330/6330 3-27 9/15
Programming Language Concepts

Examples of Attribute Grammars (Continued)

• Complete attribute grammar for simple assignment statements:

1. Syntax rule: <assign> → <var> = <expr>
Semantic rule: <expr>.expected_type ← <var>.actual_type

2. Syntax rule: <expr> → <var>[2] + <var>[3]
Semantic rule: <expr>.actual_type ←
 if (<var>[2]. actual_type == int) and
 (<var>[3].actual_type == int)
 then int
 else real
 end if
Predicate: <expr>.actual_type == <expr>.expected_type

3. Syntax rule: <expr> → <var>
Semantic rule: <expr>.actual_type ← <var>.actual_type
Predicate: <expr>.actual_type == <expr>.expected_type

4. Syntax rule: <var> → A | B | C
Semantic rule: <var>.actual_type ← look-up(<var>.string)

The look-up function looks up a variable name in the symbol table and returns
the variable’s type.

• A parse tree for the sentence A = A + B:

=

CSc 4330/6330 3-28 9/15
Programming Language Concepts

Computing Attribute Values

• The process of decorating the parse tree with attributes could proceed in a com-
pletely top-down order if all attributes were inherited.

• Alternatively, it could proceed in a completely bottom-up order if all the
attributes were synthesized.

• Because our grammar has both synthesized and inherited attributes, the evalua-
tion process cannot be in any single direction. One possible order for attribute
evaluation:

1. <var>.actual_type ← look-up(A) (Rule 4)
2. <expr>.expected_type ← <var>.actual_type (Rule 1)
3. <var>[2].actual_type ← look-up(A) (Rule 4)

<var>[3].actual_type ← look-up(B) (Rule 4)
4. <expr>.actual_type ← either int or real (Rule 2)
5. <expr>.expected_type == <expr>.actual_type is either TRUE or FALSE
 (Rule 2)

• Determining attribute evaluation order is a complex problem, requiring the con-
struction of a graph that shows all attribute dependencies.

CSc 4330/6330 3-29 9/15
Programming Language Concepts

Computing Attribute Values (Continued)

• The following figure shows the flow of attribute values. Solid lines are used for
the parse tree; dashed lines show attribute flow.

• The following tree shows the final attribute values on the nodes.

=

=

CSc 4330/6330 3-30 9/15
Programming Language Concepts

Evaluation of Attribute Grammars

• Attribute grammars have been used in a variety of applications, not all of which
involve describing the syntax and static semantics of programming languages.

• An attribute grammar for a complete programming language can be difficult to
write and read. Furthermore, the attribute values on a large parse tree are costly
to evaluate.

• Although not every compiler writer uses attribute grammars, the underlying con-
cepts are vital for constructing compilers.

CSc 4330/6330 3-31 9/15
Programming Language Concepts

Describing the Meanings of Programs: Dynamic Semantics

• No universally accepted notation or approach has been devised for describing
dynamic semantics, the run-time meaning of the constructs in a programming
language.

• Reasons for creating a formal semantic definition of a language:

Programmers need to understand the meaning of language constructs in order to
use them effectively.

Compiler writers need to know what language constructs mean to correctly
implement them.

Programs could potentially be proven correct without testing.
The correctness of compilers could be verified.
Could be used to automatically generate a compiler.
Would help language designers discover ambiguities and inconsistencies.

• Semantics are typically described in English. Such descriptions are often impre-
cise and incomplete.

CSc 4330/6330 3-32 9/15
Programming Language Concepts

Operational Semantics

• Operational semantics attempts to describe the meaning of a statement or pro-
gram by specifying the effects of running it on a machine.

• Using an actual machine language for this purpose is not feasible:

The individual steps and the resulting state changes are too small and too numer-
ous.

The storage of a real computer is too large and complex, with several levels of
memory devices plus connections to networks.

• Intermediate-level language and interpreters for idealized computers are used
instead.

• Each construct in the intermediate language must have an obvious and unambig-
uous meaning.

• The concept of operational semantics is frequently used in programming books
and language reference manuals. Example:

C Statement Meaning

for (exprl; expr2; expr3) { exprl;
 … loop: if expr2 == 0 goto out
} …

 expr3;
 goto loop
out:

The virtual computer is the human reader, who is assumed to be able to correctly
“execute” the instructions in the definition.

CSc 4330/6330 3-33 9/15
Programming Language Concepts

Operational Semantics (Continued)

• The following statements would be adequate for describing the semantics of the
simple control statements of a typical programming language:

ident = var
ident = ident + 1
ident = ident - 1
goto label
if var relop var goto label

relop is a relational operator, ident is an identifier, and var is either an identifier
or a constant.

• A slight generalization of the three assignments allows more general arithmetic
expressions and assignment statements to be described:

ident = var bin_op var
ident = un_op var

Multiple arithmetic data types and automatic type conversions complicate this
generalization.

• Adding a few more instructions would allow the semantics of arrays, records,
pointers, and subprograms to be described.

CSc 4330/6330 3-34 9/15
Programming Language Concepts

Evaluation of Operational Semantics

• The first and most significant use of formal operational semantics was to
describe the semantics of PL/I. The abstract machine and the translation rules for
PL/I were together named the Vienna Definition Language (VDL).

• Operational semantics can be effective as long as the descriptions are simple and
informal. The VDL description of PL/I, unfortunately, is so complex that it
serves no practical purpose.

• Operational semantics lacks precision because it is not based on mathematics.
Other methods for describing semantics are much more formal.

CSc 4330/6330 3-35 9/15
Programming Language Concepts

Denotational Semantics

• Denotational semantics, which is based on recursive function theory, is the
most rigorous and most widely known formal method for describing the mean-
ing of programs.

• A denotational description of a language entity is a function that maps instances
of that entity onto mathematical objects.

• The term denotational comes from the fact that mathematical objects “denote”
the meaning of syntactic entities.

• Each mapping function has a domain and a range:

The syntactic domain specifies which syntactic structures are to be mapped.
The range (a set of mathematical objects) is called the semantic domain.

CSc 4330/6330 3-36 9/15
Programming Language Concepts

Two Simple Examples

• Grammar rules for character string representations of binary numbers:

<bin_num> → '0'
 | '1'
 | <bin_num> '0'
 | <bin_num> '1'

• A parse tree for the binary number 110:

• The semantic function Mbin maps syntactic objects to nonnegative integers:

Mbin('0') = 0
Mbin('1') = 1
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)
Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1

CSc 4330/6330 3-37 9/15
Programming Language Concepts

Two Simple Examples (Continued)

• The meanings, or denoted objects (integers in this case), can be attached to the
nodes of the parse tree:

• Syntax rules for decimal literals:

<dec_num> → '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
| <dec_num> ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9')

• Denotational mappings for these syntax rules:

Mdec('0') = 0, Mdec('1') = 1, Mdec('2') = 2, …, Mdec('9') = 9
Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)
Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1
…
Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9

CSc 4330/6330 3-38 9/15
Programming Language Concepts

The State of a Program

• The state of a program in denotational semantics consists of the values of the
program’s variables.

• Formally, the state s of a program can be represented as a set of ordered pairs:

s = {<i1, v1>, <i2, v2>, …, <in, vn>}

Each i is the name of a variable, and the associated v’s are the current values of
those variables.

• Any of the v’s can have the special value undef, which indicates that its associ-
ated variable is currently undefined.

• Let VARMAP be a function of two parameters, a variable name and the program
state. The value of VARMAP(ij, s) is vj.

• Most semantics mapping functions for language constructs map states to states.
These state changes are used to define the meanings of the constructs.

• Some constructs, such as expressions, are mapped to values, not states.

CSc 4330/6330 3-39 9/15
Programming Language Concepts

Expressions

• In order to develop a concise denotational definition of the semantics of expres-
sions, the following simplifications will be assumed:

No side effects.
Operators are + and *.
At most one operator.
Operands are scalar integer variables and integer literals.
No parentheses.
Value of an expression is an integer.
Errors never occur during evaluation; however, the value of a variable may be

undefined.

BNF description of these expressions:

<expr> → <dec_num> | <var> | <binary_expr>
<binary_expr> → <left_expr> <operator> <right_expr>
<left_expr> → <dec_num> | <var>
<right_expr> → <dec_num> | <var>
<operator> → + | *

• Mapping function for an expression:

Me(<expr>, s) ∆= case <expr> of
 <dec_num> => Mdec(<dec_num>)
 <var> => if VARMAP(<var>, s) == undef
 then error
 else VARMAP(<var>, s)
 <binary_expr> =>
 if (Me(<binary_expr>.<left_expr>, s) == error OR
 Me(<binary_expr>.<right_expr>, s) == error)
 then error
 else if (<binary_expr>.<operator> == '+')
 then Me(<binary_expr>.<left_expr>, s) +
 Me(<binary_expr>.<right_expr>, s)
 else Me(<binary_expr >.<left_expr>, s) *
 Me(<binary_expr>.<right_expr>, s)

The symbol ∆= indicates the definition of a mathematical function.

CSc 4330/6330 3-40 9/15
Programming Language Concepts

Assignment Statements and Logical Pretest Loops

• Mapping function for an assignment statement:

Ma(x = E, s) ∆= if Me(E, s) == error
 then error
 else s′ = {<i1′, v1′>, <i2′, v2′>, ..., <in′, vn′>}, where
 for j = 1, 2, …, n
 if ij == x
 then vj′ = Me(E, s)
 else vj′ = VARMAP(ij, s)

The ij == x comparison is of names, not values.

• Mapping function for a logical pretest loop:

Ml(while B do L, s) ∆= if Mb(B, s) == error
 then error
 else if Mb(B, s) == false
 then s
 else if Msl(L, s) == error
 then error
 else Ml(while B do L, Msl(L, s))

The functions Msl and Mb are assumed to map statement lists to states and Bool-
ean expressions to Boolean values (or error), respectively.

CSc 4330/6330 3-41 9/15
Programming Language Concepts

Evaluation of Denotational Semantics

• Denotational semantics have been used in programming language standards. The
international standard for Modula-2, for example, uses denotational semantics.

• It is possible to use denotational language descriptions to generate compilers
automatically, but the work has never progressed to the point where it can be
used to generate useful compilers.

• Denotational descriptions are of little use to language users. On the other hand,
they provide an excellent way to describe the semantics of a language concisely.

CSc 4330/6330 3-42 9/15
Programming Language Concepts

Axiomatic Semantics

• Axiomatic semantics, which is based on mathematical logic, is the most
abstract technique for specifying semantics.

• Axiomatic semantics originated with the development of an approach to proving
the correctness of programs.

• This approach is based on the use of assertions. An assertion is a logical expres-
sion that specifies constraints on program variables.

• A precondition is an assertion that describes any necessary constraints on pro-
gram variables before the execution of a statement.

• A postcondition is an assertion that describes new constraints on program vari-
ables after the execution of a statement.

• Preconditions and postconditions are enclosed within braces to distinguish them
from program statements.

• Example of a postcondition:

sum = 2 * x + 1 {sum > 1}

In this and later examples, all variables are assumed to have integer type.

• In axiomatic semantics, the precondition and postcondition for a statement spec-
ify the effect of executing the statement.

CSc 4330/6330 3-43 9/15
Programming Language Concepts

Weakest Preconditions

• The weakest precondition is the least restrictive precondition that will guaran-
tee the validity of the associated postcondition.

• For the statement

sum = 2 * x + 1 {sum > 1}

{x > 10}, {x > 50}, and {x > 1000} are all valid preconditions. The weakest
precondition is{x > 0}.

• An inference rule is a method of inferring the truth of one logical statement
based on the truth of other logical statements.

• General form of an inference rule:

S1, S2, …, Sn
 S

This rule states that if S1, S2, …, and Sn are true, then the truth of S can be
inferred.

• An axiom is a logical statement that is assumed to be true.

• For some program statements, the computation of a weakest precondition from
the statement and a postcondition can be specified by an axiom. In most cases,
however, an inference rule must be used.

• An axiomatic definition of the semantics of a programming language must
include an axiom or inference rule for each kind of statement in the language.

CSc 4330/6330 3-44 9/15
Programming Language Concepts

Assignment Statements

• Let x = E be a general assignment statement and Q be its postcondition. Then its
weakest precondition, P, is defined as

P = Qx→E

which means that P is Q with all instances of x replaced by E.

• Example:

a = b / 2 - 1 {a < 10}

The weakest precondition is {b / 2 - 1 < 10}.

• Notation for specifying the axiomatic semantics of a statement form:

{P} S {Q}

P is the precondition, Q is the postcondition, and S is the statement form.

• Axiomatic semantics of the assignment statement:

{Qx→E} x = E {Q}

• The appearance of the left side of an assignment statement in its right side does
not affect the process of computing the weakest precondition.

• Example:

x = x + y - 3 {x > 10}

The weakest precondition is {x + y - 3 > 10}.

CSc 4330/6330 3-45 9/15
Programming Language Concepts

The Rule of Consequence

• Consider the logical statement

{x > 5} x = x - 3 {x > 0}

The precondition {x > 5} is not the same as the assertion produced by the
assignment axiom. Using this statement in a proof requires an inference rule
named the rule of consequence.

• Rule of consequence:

{P} S {Q}, P'=>P, Q=>Q'
 {P'} S {Q'}

The => symbol means “implies.” S can be any program statement.

• The rule of consequence says that a postcondition can always be weakened and a
precondition can always be strengthened.

• Example use of the rule of consequence:

{x - 3 > 0} x = x - 3 {x > 0}, (x > 5)=>(x - 3 > 0), (x > 0)=>(x > 0)
 {x > 5} x = x - 3 {x > 0}

CSc 4330/6330 3-46 9/15
Programming Language Concepts

Sequences

• Inference rule for a sequence of two statements:

{P1} S1 {P2}, {P2} S2 {P3}
 {P1} S1; S2 {P3}

• Consider the following sequence and postcondition:

y = 3 * x + 1;
x = y + 3;
{x < 10}

Weakest precondition for the second assignment: {y + 3 < 10}.

Weakest precondition for the first assignment: {3 * x + 1 + 3 < 10}.

CSc 4330/6330 3-47 9/15
Programming Language Concepts

Selection

• Inference rule for selection statements with else clauses:

{B and P} S1 {Q}, {(not B) and P} S2 {Q}
 {P} if B then S1 else S2 {Q}

• Example:

if x > 0 then
 y = y - 1
else
 y = y + 1

Assume that the postcondition is {y > 0}. Applying the axiom for assignment to
the then clause

y = y - 1 {y > 0}

produces the precondition {y - 1 > 0}. Applying the same axiom to the else
clause

y = y + 1 {y > 0}

produces {y + 1 > 0}. Because {y - 1 > 0} => {y + 1 > 0}, the rule of conse-
quence allows {y - 1 > 0} to be used as the precondition of the selection state-
ment.

CSc 4330/6330 3-48 9/15
Programming Language Concepts

Logical Pretest Loops

• Computing the weakest precondition for a logical pretest (while) loop is inher-
ently difficult because of the need to find a loop invariant.

• Inference rule for a while loop:

 {I and B} S {I}
{I} while B do S end {I and (not B)}

I is the loop invariant.

• Another complicating factor for while loops is the question of loop termina-
tion.

Proving total correctness involves showing that the loop satisfies the specified
postcondition and always terminates.

Proving partial correctness involves showing that the loop satisfies the speci-
fied postcondition, without proving that it always terminates.

• Proving the total correctness of

{P} while B do S end {Q}

requires showing that all of the following are true:

P => I
{I and B} S {I}
(I and (not B)) => Q
the loop terminates

CSc 4330/6330 3-49 9/15
Programming Language Concepts

Logical Pretest Loops (Continued)

• Consider the following loop:

while y <> x do y = y + 1 end {y = x}

{y <= x} can be used as the loop invariant.

• This loop invariant can also be used as the precondition for the while state-
ment. The goal is now to show that the loop

{y <= x} while y <> x do y = y + 1 end {y = x}

satisfies the four criteria for loop correctness:

P => I
{I and B} S {I}
(I and (not B)) => Q
the loop terminates

• It is easy to show that the first three criteria are satisfied. Loop termination is
also clear, since y increases with each iteration until it is eventually equal to x.

CSc 4330/6330 3-50 9/15
Programming Language Concepts

Program Proofs

• Consider the problem of proving the following program correct:

{x = A AND y = B}
t = x;
x = y;
y = t;
{x = B AND y = A}

• Informal proof:

Applying the assignment axiom to the last statement yields the precondition

{x = B AND t = A}

Using this as the postcondition for the middle statement yields the precondition

{y = B AND t = A}

Finally, this can be used as the postcondition for the first statement, which yields
the precondition

{y = B AND x = A}

This assertion is mathematically equivalent to the precondition for the entire
program (because AND is commutative).

• Formal proof:

1. {y = B AND x = A} t = x; {y = B AND t = A} Assignment axiom

2. (x = A AND y = B) => (y = B AND x = A)

3. (y = B AND t = A) => (y = B AND t = A)

4. {x = A AND y = B} t = x; {y = B AND t = A} Rule of consequence (1, 2, 3)

5. {y = B AND t = A} x = y; {x = B AND t = A} Assignment axiom

6. {x = A AND y = B} t = x; x = y; {x = B AND t = A} Sequence rule (4, 5)

7. {x = B AND t = A} y = t; {x = B AND y = A} Assignment axiom

8. {x = A AND y = B} t = x; x = y; y = t; {x = B AND y = A}
Sequence rule (6, 7)

CSc 4330/6330 3-51 9/15
Programming Language Concepts

Program Proofs (Continued)

• The following program contains a loop, making it harder to prove correct:

{n >= 0}
count = n;
fact = 1;
while count <> 0 do
 fact = fact * count;
 count = count - 1;
end
{fact = n!}

• The loop computes the factorial function in order of the last multiplication first,
so part of the invariant can be

fact = (count + 1) * (count + 2) * … * (n - 1) * n

To prove loop termination, it is important that count always be nonnegative,
leading to the following invariant:

I = (fact = (count + 1) * … * n) AND (count >= 0)

• Again, P can be the same as I. It is easy to show that the loop

{(fact = (count + 1) * … * n) AND (count >= 0)}
while count <> 0 do
 fact = fact * count;
 count = count - 1;
end
{fact = n!}

satisfies the four criteria for loop correctness:

P => I
{I and B} S {I}
(I and (not B)) => Q
the loop terminates

CSc 4330/6330 3-52 9/15
Programming Language Concepts

Evaluation of Axiomatic Semantics

• Defining the semantics of a complete programming language using the axiom-
atic method is difficult.

• Axiomatic semantics is a powerful tool for research into program correctness
proofs. It also provides an excellent framework for reasoning about programs.

• Its usefulness in describing the meaning of programming languages to language
users and compiler writers is, however, highly limited.

