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Models of Computation 

We begin our study by developing several models of computation, each 
of which reflects all of the features inherent in computation. In an effort to 
simplify the arguments, all artifacts of computation will be absent from our 
models. We will start with existing computational paradigms and remove 
the "bells and whistles" of convenience, arriving at simplified versions of 
each paradigm that contain all the fundamentally important features of the 
original. The simplified versions will be shown to be equivalent in a strong 
sense. This will suggest a model-independent view of computation in terms 
of "programs" computing functions. 

The first artifact of computation that we will dismiss is the notion 
that arguments may be of different types. All our inputs, outputs, tempo-
rary variables, etc. will be natural numbers {members ofN). We will argue 
informally that all the other commonly used argument types are included 
solely for convenience of programming and are not essential to computation. 
The argument is based on how computers encode everything into sequences 
of bits. Boolean arguments can be represented by using the first two mem-
bers of N, 0 and 1. Floating point numbers, as a consequence of their finite 
representation, are actually rational. Rational numbers are pairs of natu-
ral numbers. In the section on coding, we will show how to encode pairs 
of natural numbers as a single natural number. Consequently, members of 
N suffice to represent the rational numbers, and hence, the floating point 
numbers. Natural numbers represent character strings via an index, or po-
sition, in some standard list of all strings. For example, a standard list of 
all strings using the alphabet {a ... z} would start by associating 0 with 
the empty string and then numbering the strings in lexicographical order: 
a, b, · · ·, z, aa, ab, · · ·, az, ba, · · ·. 

Analog computation can also be viewed as computing with natural 
numbers. This follows from the observation that any voltage level can 
only be measured in increments determined by the measuring device. Even 
though the voltages are theoretically continuous, all our devices to measure 
voltages render discrete values. For common examples of turning essen-
tially analog information into a numeric representation we need look no 
further than the digitally encoded music found in compact disk technology 
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or the digitally encoded images of high definition television and compact 
disk memories. We are now ready to present our first model of computation. 

§1.1 Random Access Machines 
All contemporary computers allow the "random" accessing of their 

memory. An address is sent to the memory which returns the data stored 
at the given address. The name "random access machine" stems from the 
fact that the earlier models were not random access; they were based on 
sequential tapes or they were functional in nature. We will consider these 
models later. As a starting point of our investigation, we will consider a 
model that strongly resembles assembly language programming on a con-
ventional computer. The model that we introduce will perform very simple 
operations on registers. Every real-world computer has a fixed amount of 
memory. This memory can be arbitrarily extended, at great loss of effi-
ciency, by adding a tape or disk drive. Then the ultimate capacity of the 
machine is limited only by one's ability to manufacture or purchase tapes 
or disks. Not wanting to consider matters of efficiency just yet, our random 
access machine (RAM) will have a potentially infinite set of registers, R1, 
R2, · · ·, each capable of holding any natural number. Notice that we have 
just eliminated main storage and peripheral storage (and their manage-
ment) as artifacts of how we (necessarily) perform computations. We will 
be concerned with data, and computation on that data. The issues of input 
and output will not be addressed in any detail. 

RAM programs will be abstractions of assembly language programs in 
the sense that they use a very limited set of instruction types and the only 
control structure allowed is the much maligned branch instruction. There 
is nothing special about our choice of instructions. Among the possible 
choices for instruction sets, the one chosen here is based on some nontech-
nical notion of simplicity. RAM programs are finite sequences of very basic 
instructions. Hence, each RAM program will reference only finitely many 
of the registers. Even though the memory capacity of a RAM is unlimited, 
any computation described by a RAM program will access only finitely 
much data, unless, of course, the computation described never terminates. 
In case of a nonterminating computation, the amount of data accessed at 
any given time is finite. Each instruction may have a label, where label 
names are chosen from the list: NO, N1, · · ·. Each instruction is of one of the 
following seven types: 

1. INC Ri Increment (by 1) the contents ofregister Ri. 
2. DEC Ri Decrement (by 1) the contents of register Ri. If Ri contains 0 be-

fore this instruction is executed, the contents of Ri remain unchanged. 
3. CLR Ri Place 0 in register Ri. 
4. Ri +--Rj Replace the contents of register Ri with the contents of register 

Rj. The contents of Rj remain unchanged. 
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5. JMP Nix If x = a then the next instruction to execute is the closest 
preceding instruction with label Ni. If x = b then the next instruction 
to execute is the closest following instruction with label Ni. The a 
stands for "above" and the b for "below." This unusual convention 
allows for the pasting together of programs without paying attention 
to instruction labels. 

6. Rj JMP Nix Perform a JMP instruction as above if register Rj contains 
aO. 

7. CONTINUE Do nothing. 

Definition 1.1: A RAM program is a finite sequence of instructions such 
that each JMP instruction (conditional or otherwise) has a valid destination, 
e.g., the label referred to in the instruction exists, and the final statement 
is a CONTINUE. 

Definition 1.2: A RAM program halts if and when it reaches the final 
CONTINUE statement. 

Definition 1.3: A RAM program P computes a partial function ¢, of n 
arguments, iff when P is started with x1 , ... , Xn in registers Rl , ... , Rn 
respectively and all other registers used by P contain 0, P halts only if 
¢(xb ... , Xn) is defined and Rl contains the value ¢(x1, ... , Xn)· A partial 
function is RAM computable if some RAM program computes it. 

There is a subtle difference between asserting the existence of a RAM 
program computing some function and actually being able to produce the 
program. Consider, for example, the problem of trying to decide how many 
times the word "recursion" appears as a substring in some arbitrary but 
fixed infinite random string of symbols from the alphabet {a ... z }. No mat-
ter how much of the string we examine, we will never know if we have seen 
all of the occurrences of the word "recursion." However, there exists a RAM 
program that will tell us exactly how many occurrences there are. Owing to 
the possibility of there being infinitely many instances of the word "recur-
sion" embedded in the infinite random string, we will use the convention 
that a RAM program can signal that there are exactly n repetitions of the 
word "recursion" in the mystery string by outputting n + 1. The output 0 
will be reserved to indicate the situation where there are infinitely many 
occurrences of the substring we are trying to count. Now, for any natural 
number n, there is a RAM program that computes the constant n function. 
One of these programs will tell us exactly how many occurrences of the 
word "recursion" are in the string. Which program we cannot say, so it will 
be impossible to deliver the RAM program that solves our problem. 

Most assembly languages have more powerful arithmetic instructions. 
Recall that our purpose here is not ease of writing RAM programs, but 
rather ease of proving things about RAM programs. As a first example, the 
following program computes the sum of two arguments. 
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Nl R2 JMP N2b 
INC Rl 
DEC R2 
JMP Nla 

N2 CONTINUE 
Exercise 1.4: Show that exponentiation is RAM computable. 
Exercise 1.5: Show that integer division is RAM computable. 

It should be a straightforward, tedious exercise to show that all your 
favorite assembly language instructions have implementations in the RAM 
programming language described above. In fact, not all seven of the in-
struction types are necessary. 
Proposition 1.6: For every RAM program P there is another RAM pro-
gram P' computing the same function such that P' only uses statement 
types 1, 2, 6 and 7. 
Proof: Suppose P is a RAM program. We show how to transform P into 
the desired P' in steps, eliminating one type of offending instruction at 
each step. First, we eliminate the unconditional jumps of statement type 5. 
Choose n least such that P makes no reference to register Rn. Form RAM 
program P" from P by replacing each "Nk JMP Nix" instruction with the 
following code segment: 

Nk CLR Rn 
Rn JMP Nix 

Next, we eliminate the register transfers of statement type 4. Choose 
m and n least such that P" makes no reference to register Rm or register 
Rn. Let Nc and Nd be two labels not used in P". Form RAM program P 111 

from P" by replacing each "Nk Ri +-Rj" with the following code segment: 
Nk CLR Ri 

CLR Rn 
CLR Rm 

Nc Rj JMP Ndb 
DEC Rj 
INC Ri 
INC Rn 
Rm JMP Nca 

Nd Rn JMP Ncb 
DEC Rn 
INC Rj 
Rm JMP Nda 

Nc CONTINUE 
Finally, we eliminate the register clear instructions. Let Nc be a label 

not used by P 111 • Choose n large enough such that no register Rm is ref-
erenced by P 111 for any m ;::::: n. This will guarantee that register Rn will 
initially contain a zero. Finally, form P' from P 111 by replacing each "Nk 
CLR Ri" instruction with the following code segment: 



Nk Ri JMP Ncb 
DEC Ri 
Rn JMP Nka 

Nc CONTINUE 
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This completes the proof of the Proposition. The end of proofs will 
normally be indicated by the symbol ®· 

§1.2 Partial Recursive Functions 
The next model of computation that we will examine resembles pro-

gramming in LISP. Actually, it is the other way around - LISP resembles 
the following computation paradigm. We start by defining the base func-
tions. 

The class of base functions contains the zero function Z where Z ( x) = 0 
for each x and the successor function S where S(x) = x + 1 for each x. 
The class of base functions also contains the projection functions. For each 
positive n and each positive j ::=; n there is a projection function Uj such 
that Uj ( x 1. ... , Xn) = xi. Essentially, the projection function selects one of 
its arguments. The situation is analogous to the UNIX convention of using 
$1, $2, · · · to represent individual arguments in the programs that we call 
shell scripts. 

The base functions can be combined to obtain other functions. Large 
classes of functions can be obtained in this fashion. We will look at three 
operations for defining new functions. Since these operators map functions 
to functions, they can (and will) be viewed as closure operators. The first of 
these operators is an iteration operator that is analogous to the well-known 
"for loops" of FORTRAN and other subsequent programming languages. 
Definition 1. 7: A function f of n + 1 arguments is defined by primitive 
recursion from g, a function of n arguments, and h, a function of n + 2 
arguments, iff for each x1, ... , Xn: 

f(xl, ... , Xn, 0) = g(xb ... , Xn) 
f(xb ... ,xn, y + 1) = h(xt. ... , Xn, y, f(xl, ... , Xn, y)). 

For the n = 0 case of the above definition we adopt the convention that a 
function of 0 arguments is a constant. 

The recursion of the above definition is "primitive" because the value 
f(xt.···•xn,y) can be determined from the value of f(xb···,xn,z) for 
some z < y. Forms of recursion that are not primitive will be discussed 
extensively later in the book. 
Definition 1.8: A function f of n arguments is defined by composition 
from g a function of m arguments and functions ht. h2, ... , hm, each of n 
arguments iff for each x1, ... , Xn: 

f(xl, ... ,Xn) = g(hl(Xt. ... , Xn), ... , hm(Xt. ... , Xn)). 

The m = 1 case of the above definition yields the traditional composition 
scheme. 


