Ch. 7 Utilities]|

Filtering patterns: egrep, fgrep, grep

grep -hilnvw pattern {fileName}*

displays lines from files that match the pattern

pattern : regular expression

-h
-1
-1
-n
-V
W

do not list file names if many files are specified

ignore case

displays list of files containing pattern
display line numbers

displays lines that do not match the pattern
matches only whole words only

fgrep : pattern must be fixed string

egrep : pattern can be extended regular expression

-x option in fgrep: displays only lines that are exactly
equal to string

extended regular expressions:

+ matches one or more of the single preceding character

7 matches zero or one of the single preceding character
| either or (ex. ax | bx¥)

() %, +, 7 operate on entire subexpression not just on
preceding character; ex. (ab | ba)*

sort -tc -r {sortField -bfMn}* {fileName}x

-tc separator is ¢ instead of blank

-r descending instead of ascending

-b ignore leading blanks, -f ignore case, -M month sort, -n numeric sort

$ cat sort.dat

John Smith 1222 20 Apr 1956
Tony Jones 1012 20 Mar 1950
John Duncan 1111 20 Jan 1966
Larry Jones 1223 20 Dec 1946

$ sort +0 -2 sort.dat

John Duncan 1111 20 Jan 1966
John Smith 1222 20 Apr 1956
Larry Jones 1223 20 Dec 1946
Tony Jones 1012 20 Mar 1950

$ sort +4 -5 -M sort.dat
John Duncan 1111 20 Jan 1966
Tony Jones 1012 20 Mar 1950
John Smith 1222 20 Apr 1956
Larry Jones 1223 20 Dec 1946

$ sort +4 -5 sort.dat

John Smith 1222 20 Apr 1956
Larry Jones 1223 20 Dec 1946
John Duncan 1111 20 Jan 1966
Tony Jones 1012 20 Mar 1950

- Comparing files
cmp -1s filel file2 offsetl offset2

compares two files for equality; reports the first byte where
there is a mismatch;
if one file is a prefix of the other, EOF message is displayed,;

Optional values offsetl and offset2 are the offsets into the files
where comparison begins.

-1 option displays the line number and byte offset of all
mismatched bytes
-s option suppresses all output

diff -i filel file2
compares two files and outputs a description of their differences;

-1 flag ignores case

Archiving:

tar -cfrtuvx tarFileName filelList

creates a tar-format (tape archive) file from the fileList

-C

option
option

creates the tar-format file
extracts files from the tar-format file

option generates a table of contents

option unconditionally appends listed files to tar formatted file

option appends only files that are more recent than those already
archived

option enables you to give a tar file name (default is /dev/rmtO)

verbose

filelList contains directory, its contents are appended/extracted
recursively.

$ tar cvf ch6.tar ché
ché6/

ch6/menu.csh

ch6/ junk/
ch6/junk/junk.csh
ch6/junk.csh
ch6/menu2.csh
ch6/multi.csh
ch6/expril.csh
ch6/expr3.csh
ch6/expr4.csh
ch6/if .csh
ch6/menu3.csh

$ 1s -1 ch6.tar

-rw-rw-r-— 1 raj raj 20480 Jun 26 20:08 ch6.tar
$ tar -tvf ch6.tar

drwxr-xr-x raj/raj 0 1999-06-03 09:57 ch6/
-TWXr-Xr-x raj/raj 403 1999-06-02 14:50 ch6/menu.csh
drwxr-xr-x raj/raj 0 1999-06-03 09:57 ch6/junk/
-TWXr-xXr-x raj/raj 1475 1999-06-03 09:57 ch6/junk/junk.csh
-TWXr-xXr-x raj/raj 1475 1999-06-03 09:56 ch6/junk.csh
-rw-r--r-- raj/raj 744 1999-06-02 15:59 ch6/menu2.csh
-rwxr-xr-x raj/raj 445 1999-06-02 15:26 ch6/multi.csh
-rwxr-xr-x raj/raj 279 1999-06-02 15:18 ch6/exprl.csh
-rwxr-xr-x raj/raj 98 1999-06-02 15:20 ch6/expr3.csh
-TWXr-Xr-x raj/raj 262 1999-06-02 15:21 ch6/expr4.csh
-TWXr-Xr-x raj/raj 204 1999-06-02 15:22 ch6/if.csh

-rw-r--r-- raj/raj 744 1999-06-02 16:01 ch6/menu3.csh

$ rm -fr ché

$ tar -rvf
date.txt

ch6.tar

$ tar tvf ch6.tar

drwxr-xr-x
—“TWXT—Xr-X
drwxr-xr-x
—“ITWXT—XI—-X
—“TWXY—XIr-X
-rW-r—-r--—
—“TWXT—XIr-X
—-TWXT—Xr-X
—-TWXT—XIr-X
—“TWXT—Xr-X
—“TWXT—XI—-X
“rW-r——-r--—
“rW-Yw-r--

raj/raj
raj/raj
raj/raj
raj/raj
raj/raj
raj/raj
raj/raj
raj/raj
raj/raj
raj/raj
raj/raj
raj/raj
raj/raj

date.txt

403

1475
1475
744
445
279
98
262
204
744
29

1999-06-03
1999-06-02
1999-06-03
1999-06-03
1999-06-03
1999-06-02
1999-06-02
1999-06-02
1999-06-02
1999-06-02
1999-06-02
1999-06-02
1999-06-21

09:
14:
09:
09:
09:
15:
15:
15:
15:
15:
15:
16:
:06

11

57
50
57
57
56
59
26
18
20
21
22
01

ch6/
ch6/menu.csh
ch6/junk/
ch6/junk/junk.csh
ch6/junk.csh
ch6/menu?2.csh
ch6/multi.csh
ch6/exprl.csh
ch6/expr3.csh
ch6/expré.csh
ch6/if.csh
ch6/menu3.csh
date.txt

$ tar xvf ch6.tar
ch6/

ch6/menu. csh
ch6/junk/
ch6/junk/junk.csh
ch6/junk.csh
ch6/menu2.csh
ch6/multi.csh
ch6/exprl.csh
ch6/expr3.csh
ch6/expr4.csh
ch6/if.csh
ch6/menu3.csh
date.txt

- find pathlist expression

The find utility not only allows you to find files starting at
pathList and descending from there on, but also
allows you to perform certain actions such as deleting
the files etc.

Expression Value/Action
-name pattern true if the file name matches pattern
-perm oct true if the octal description of file’s permission
equals oct
-type ch true if the type of the file is ch
(b=block, c=char ..)
-user userld true if the owner of the file is userlId

—-group groupld true if the group of the file is groupld

Expression Value/Action

—atime count true if the file has been accessed within
count days
-ctime count true if the contents of the file have been
modified within count days or any of its
file attributes have been modified
—exec command true if the exit code = 0 from executing the command.
command must be terminated by \;
If {} is specified as a command line argumentm it is
replaced by the file name currently matched
-print prints out the name of the current file and returns tru
-1s displays the current file’s attributes and returns true
lexpression negation of expression
exprl [-al] expr2 short circuit and
exprl -o expr2 short circuit or

$ find ch6 -name j*
ch6/ junk
ch6/junk/junk.csh
ch6/junk.csh

$ find / -name x.c
searches for file x.c in the entire file system

$ find . -mtime 14 -1s
lists files modified in the last 14 days

$ find . —name ’*.bak’ -1s -exec rm {} \;
1s and then remove all files that end with .bak

- Scheduling commands: crontab and at

crontab cronTabName
crontab -ler [useName]

The crontab utility allows you to schedule a series of
jobs to be executed on a periodic basis. A file with the
following line format must be created:

minute hour day month weekday command
(0-59) (0-23) (1-31) (1-12) (1-7; 1=Monday) (any Unix command)

ex.
$ cat crontab.cron

0 8 * * 1 echo Happy Monday Morning

* * * *x * echo One Minute passed

30 15 1 * 1 mail users % Jan meeting at 3pm

$ crontab crontab.cron

crontab -1

DO NOT EDIT THIS FILE - edit the master and reinstall.

(crontab.cron installed on Sat Jun 26 23:33:35 1999)

(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37 vixie Exp|$)
8 * * 1 echo Happy Monday Morning

* * * *x echo One Minute passed

30 15 1 * 1 mail users 7 Jan meeting at 3pm

¥ O H#H H H &

$ crontab -r
unregister crontab file

- at command allows you to schedule one-time commands/scripts

at
at
at

-csm time [date [, year]] [+increment] [script]

-r [jobId]+

-1 [jobIdl+

option : use C-shell

option : use Bourne shell

option : send mail

option : remove entry from at queue
option : list entries in at queue

time is specified as HH or HHMM followed by an optional AM/PM
date is spelled out using first 3 letters of day and/or month
keyword now can be used in place of time sequence

stated time may be augmented by an increment (number followed
by minutes/hours/days/weeks/months/years)

$ cat at.csh
#!/bin/csh
echo at done > /dev/ttyl

$ at now + 2 minutes at.csh

$ at -1
lists the job here

You may program the script to reschedule itself as follows:

#!/bin/csh
date > /dev/ttyl
at now + 2 minutes at.csh

- awk: utility that scans one or more files and performs an
action on all lines that match a particular condition.
The conditions and actions are specified in an awk program.

- awk reads a line; it breaks it into fields separated by
tabs/spaces (could have other separators specified by -F option)

awk programs has one or more commands of the form:

[condition] [\{ action \} 1]

where condition is one of the following:

special tokens BEGIN or END

an expression involving logical operators, relational operators,
and/or regular expressions

action is one of the following kinds of C-like statements
if-else; while; for; break; continue

assignment statement

print; printf;

next (skip remaining patterns on current line of input)
exit (skips the rest of the current line)

list of statements

- accessing individual fields: $1, ..., $n refer to fields 1 thrun
$0 refers to entire line
- built-in variable NF referers to number of fields

% awk -F: ’{ print NF, $1 }’ /etc/passwd
prints the number of fields and the first field in the /etc/passwd fil

- BEGIN condition is triggered before the first line is read and
the END condition is triggered after the last line is read;

p2.awk
BEGIN { print "Start of file: "}
ﬁ @Hwﬁﬁ %H " " wm " " %N W

END { print "End of file", FILENAME }

FILENAME: built-in variable for name of file being processed
To execute the above program, use
% awk -F: -f p2.awk /etc/passwd

- Operators

p3.awk

NR > 1 &% NR < 4 { print NR, $1, $6, $NF }

built-in variable NR contains the current line number

- Variables
p4.awk

BEGIN {print "Scanning file"}
{ printf "line %d: %s\n", NR, $0
lineCount++;
wordCount += NF;
+
END { printf "lines = Yd, words = ’%d\n", lineCount, wordCount }

- Control structures
pS . awk
for (i = NF; i >=1; i--)
printf "%s ", $i;

printf "\n";
+

- extended regular expressions

% awk -F: > /t.xe/ { print $0} ’ /etc/passwd

- Condition ranges: two expressions separated by comma;
awk performs action on every line from the first line that
matches first expression until line that matches second condition

awk -F: ’ /root/,/nobody/ {print $0}’ /etc/passwd

- Built-in functions: exp(), log(), sqrt(), substr() etc.

$ awk -F: ’ {print substr($1,1,2)}’ /etc/passwd

Hard Links:
% 1ln original newLink

This command creates a hard link to the original file

called newLink;
Both labels will refer to the same file; File will be deleted only
when both labels are removed.

If newLink is a directory then links are make within the directory

Soft (symbolic) Links:
% 1ln -s original newLink

Symbolic/soft links can be created from one file system into
another file system; Hard links are restricted to one file system

Use 1s -1L to view details (which file it refers to) of the link;
ls -1 will display the contents of the symbolic link;

- Substituting User

% su [-] userName

if userName is not specified, root is assumed.

T
T

T
T

/.

T

compress/uncompress

compress fileName (.2)
uncompress fileName

gzip fileName (.gz)
gunzip fileName

crypt key < sample.txt > sample.crypt

crypt key < sample.crypt > sample.txt

key could be any string

(to crypt)

(to uncrypt)

- sed (stream editor) scans one or more text files and performs
an editing action on all the lines that match a condition.

- actions and conditions may be stored in a file or may be specified
on the command line within single quotes.

- sed commands begin with an address or an addressRange or a Regular
expression.

- sed does not modify the input file; it just writes modified file

to standard output

a\
b label
c\
d
i\
1

P

q
r file

s/patl/pat2/f

t label
w file
y/strl/str2/

lcmd
label

append lines to output until one not ending in \
branch to command : label

change lines to following text (as in a\

delete lines

insert following text before next output

list line, making all non-printing characters visible
(tabs appear as >; lines broken with \)

print line

quit (for scripts)

read file, copy contents to stdout

substitute pat2 for pat1

f = g, replace all occurrences

f = p, print

f = w file, write to file

test: branch to label if substitution made to current 1 ine
write line(s) to file

replace each character from strl with corresponding
character from str2 (no ranges allowed

print current input line number

do sed cmd if line is not selected

set label for b and t commands

treat commands up to the matching } as a group

Examples:
- substituting text:
%h sed ’s/~/ /’ file > file.new
indents each line in the file by 2 spaces

% sed ’s/” x//’ file > file.new
removes all leading spaces from each line of the file

% sed ’/a/d’ file > file.new
deletes all lines containing ’a’

% cat sedil
11\

abcd\

efg

% sed -f sedl file > file.new
will add two lines in the beginning of the file

% cat sed?2
1,3c\
Lines 1-3 are censored

will replace lines 1-3 by Lines 1-3 are censored

% cat sed3

1c\

Line 1 is censored
2¢c\

Line 2 1is censored
3c\

Line 3 is censored

multiple commands; individual lines are replaced

% sed ’$r file’ f > g
appends file at end of file f

%h sed -e ’s/"/<< /[’ -e ’s/$/ >>/° file
multiple commands (-e option is optional! means script on command line

- tr utility (translate)

% tr —cds string 1 string2

This command maps all characters in std. input from character

set stringl to the corresponding character in string2; If length of
string2 is less, the last character is repeated.

-c option causes stringl to be complemented (every character not in
stringl now is in stringl!)

-d option causes every character in stringl to be deleted from std.
input

-s option causes every repeated character in stringl to be condensed

to one occurence

Examples:

% tr a-z A-Z < filel > file?2
causes lower-case to upper-case conversion

% tr -c a X < filel > file2
causes every non-a character to be replaced by X (including nl)

h tr —c a-z ’\012’ < filel > file2
causes all non alphabetic characters to be replaced by ascii 12 (nl)

% tr -d a-c < filel > file2
causes all a, b, ¢ to be deleted from filel

_ Perl _

- Shell scripts; C programming
- Perl takes its syntax and features from both

Printing text:
print "hello world\n";

Variables: (untyped) always begins with a §
$i = 3;

In addition to standard arithmetic operators, a range operator
is available.

print 1, 2, 3..15, "\n"; # numbers, range
print "AB", "BBBC", "CDD", "\n"; # strings
print "A"."B"; # concatenation

- Arrays: dynamically allocated; array names begin with @ symbol
array index begins at O

Qarr = (1,2,3,4,5);

@brr = (1..15);

print Qarr([3], "\n";

print Q@arr, "\n"; # will print 12345
print Qarr + @brr; # will print 20

- Mathematical and Logical operators:

- if-else, while, for (from C) and foreach (from C shell)

if ($1 == 0) {

print "it’s true\n";
}
else {

print "it’s false\n";
}

while ($i <= $j) {
print "it’s true\n";
$i++;

3

for ($i=0; $i<10; $i++) {
print "\$i=",$i, "\n";
}

foreach $i (1..15) {
print "\$i=",$i, "\n";

3

- File I/0

@line = <stdin>;
foreach $i (@line);
print "->", $i; # also reads in EOLN; reads and prints each line
from stdin

¥

$FILE = "info.dat";

open(FILE) ;

Qarr = <FILE>; # an array of lines
close(FILE);

foreach $line (@arr) {
print "$line";

}

- Functions:

sub pound2dollars A
$EXCHANGE_RATE = 1.54;
$pounds = $_[0]; # refers to the first argument
return ($EXCHANGE_RATE * $pounds);

+

$book = 3.0;
$value = pound2dollars($book);
print "Value in dollars = $value\n";

- Command Line arguments

$n = $#ARGV+1; # number of arguments (beginning at 0)
print $n, " args: \n";
for ($i = 0; $i < n; $i++) {
print "@ARGV[$i]\n";
+

pounds on command line:

if ($#ARGV < 0) {
print "Specify value in pounds to convert to dollars\n";
exit;

+

$poundvalue = QARGV[O];

$dollarvalue = pounds2dollars($poundvalue);

print "Value in dollars = $dollarvalue\n";

loan -a amount -p payment -r rate
prints a table showing each month; principal and interest
and balance

$i = 0;
while ($i < $#ARGV) {
if (QARGV[$i] eq "-r") {
$RATE = QARGV[++$i];
}
else {
if (@ARGV[$i] eq "-a") {
$AMOUNT = QARGV[++$i];
}
else {
if (@ARGV[$i] eq "-p") {
$PAYMENT = QARGV[++$i];

}

else {
print "Unknown argument (@ARGV[$il)\n";
exit

if ($AMOUNT == O || $RATE == 0 || $PAYMENT == 0) {
print "Specify -r rate -a amount -p payment\n";

exit
}
print "Original balance: \$$AMOUNT\n";
print "Interest rate : ${RATE}/\n";
print "Monthly payment : \$$PAYMENT\n";
print "\n";

print "Month\tPayment\tInterest\tPrincipall\tBalance\n\n";

$month = 1;

$rate = $RATE/12/100;
$balance = $AMOUNT;
$payment = $PAYMENT,

while ($balance > 0) {
$interest = roundUpAmount($rate * $balance);
$principal = roundUpAmount ($payment - $interest);
if ($balance < $principal) {
$principal = $balance;
$payment = $principal + $interest;
}
$balance = roundUpAmount ($balance - $principal);
print "$month\t\$$payment\t\$$interest\t\t\$$principal\t\t\$$balance\n";
$month++;

}

sub roundUpAmount {
$value = $_[0];
$newvalue = (int (($value * 100) + 0.5))/100;
return $newvalue;

$ perl loan.pl -r 12.5 -p 30 -a 300
Original balance: $300

Interest rate : 12.5%

Monthly payment : $30

Month Payment Interest Principal Balance
1 $30 $3.13 $26.87 $273.13
2 $30 $2.85 $27.15 $245.98
3 $30 $2.56 $27.44 $218.54
4 $30 $2.28 $27.72 $190.82
5 $30 $1.99 $28.01 $162.81
6 $30 $1.7 $28.3 $134.51
7 $30 $1.4 $28.6 $105.91
8 $30 $1.1 $28.9 $77.01

9 $30 $0.8 $29.2 $47.81

10 $30 $0.5 $29.5 $18.31

