Ch. 6: C Shell

- C shell supports all the core features discussed in Ch. 3
plus the following:

* several ways to set and access variables

*

built-in programming language
(conditional branching, looping etc.)
command customization using aliases
access to previous commands using history mechanism
advanced job control

* %X X X

several new built-in and enhancements to existing commands

Startup

- The C shell is located in /bin/csh usually; it is a C program!
- When started as a login shell, the startup sequence is as follows:
* Execute commands in $HOME/.cshrc, if it exists
* Then, execute commands in global login initialization file
/etc/login, if it exists

* Then, execute commands in $HOME/.login

A sample .cshre file

- The .cshrc file usually contains commands that set aliases
or anything else that applies only to the current shell.
(rc stands for run commands)

alias h history
alias 11 1s -1
alias 1s 1s -F

alias rm rm -1

- The .login file usually contains commands to set the terminal,
set environment variables, etc.

echo -n "Enter your terminal type (default is vt100): "
set termtype = $<

set term = vt100

if ("$ermtype" != "") set term = "$termtype"

unset termtype

set path=(. /bin /usr/bin /usr/local/bin)

stty erase "°?7" kill ""U" intr "“C" eof "“D" crt crterase
set cdpath = (7)

set history = 40

set notify
set prompt = "! % "
set savhist = 32

Variables

set name = value

if name is not specified, null string is assigned

1if name = value i1s omitted, all variables are listed
value could be a list within parentheses

Some examples:

% set flag

% set color = red

% set name = "Graham Glass"

Two new access methods:

(1) ${name} ; use this if name immediately followed by string
(2) ${?name} ; replaced by 1 if name is set and O otherwise

% set verb = sing

/

echo I like ${verbling
I like singing

The following is a script illustrating the (2) access method
set flag = abc
if (${?flag}) then
echo flag is set
endif

T
T

/.

T

/.

List Variables|

set colors = (red green blue)
echo $colors[1]

red

echo $colors[2-3]

green blue

echo $colors[*]

red green blue

echo $#colors
3

Building lists:

T
T
T

T
T
T

T
T
T
T

set colors[4] = yellow # Not ok since [4] does not exists
set colors = ($colors pink)

echo $colors

red green blue pink

set colors[4] = yellow # ok since [4] exists

set colors = $colors black # forgot (!

echo $colors # sets only first value

red

set s1 = (a b c)
set s2 = (b c f)
set 83 = ($s1 $s2)
echo $s3
abcbcf

$<
$argv

$cwd

$home
$ignoreeof
$noclobber

$noglob
$path

$prompt
$savehist
$shell
$status

Some Predefined local variables]|

The next line of standard input

A list containing all of the positional parameters;
$argv[1] = $1 etc.

Current working directory

Shell’s home directory

Prevents shell from terminating when CTRL-D is pressed

Prevents existing files from being overwritten by >
and nonexisting files from being appended using >>

Prevents wildcard expansion

Used to locate executables (list of directories
extracted from PATH environment variable)

The shell prompt

Number of commands to save in the history file

Full path name of the login shell

exit code of the last command

#!/bin/csh

echo -n "please enter your name: "

set name = $<

echo ho $name, your current directory is $cwd

- Environment Variables

setenv name word # no list values allowed
% setenv TERM vt100

- predefined environment variable $LOGNAME (shell owner’s user id)

String, Arithmetic and File-oriented _wﬁ:,mmmwobm_

- String expressions:
sl ==
sl !=
sl ="
sl I~

Note: if
for comparison

s?2 true if

s2 true if
s2 Like ==
s2 Like !=

either side

exactly equal

unequal

except rhs may contain wildcards
except rhs may contain wildcards
is a list, the first item is used

#!/bin/csh

echo -n "do you like the C shell? "
set reply = $<

if ($reply == "yes") then

echo you entered yes

else if ($reply =" y*) then

echo I assume you mean yes

else

echo not yes

endif

- Arithmetic expressions (P 189 Table lists all operators)
similar to C language
&, &&, |, ||, <, >, <<, >> operations must be surrounded
by () so that they are not misinterpreted as shell operators

ex. if (($a > $b) [| ($a <= $c)) then
Do not use the set command to assign an expression to a variable

Instead use the @ command as follows: (@ by itself lists all shell
variables)

% @a = 2 * 2
% echo $a
4
h @a += 1
% echo $a
5

- File-oriented Expressions:
-option fileName

Option Meaning

r Shell has read permission for fileName
Shell has write permission for fileName
Shell has execute permission for fileName
fileName exists
fileName is owned by the same user as that
of the shell process
fileName exists and is O bytes in size

O ® XK =

N

f
d fileName is a directory

fileName is a regular file (not dir, special)

The following is a script called 63.csh

#!/bin/csh

echo -n "Enter name of file you wish to erase: "
set fileName = $<

if (! (-w $fileName)) then

echo you do not have permission to erase the file
else

rm $fileName

endif

% 63.csh
Enter name of file you wish to erase: /

you do not have permission to erase the file

Filename oon_@ﬁos_

% set filec

- after setting filec, you do not have to type the entire file names
instead you may type esc key after initial few letters
if a unique match exists, the file name is automatically completed
otherwise type * to view all matching files

- In tcsh the shell displays all matching files when esc is pressed.

- alias word string
- unalias pattern

Some useful aliases:

alias 1s 1ls -F
alias rm rm -i
alias h history

alias ¢ clear
alias 1s-1 1s -1
alias 11 1s -1
alias dir 1s

Aliases

T

/.

T

/.

History ZmovmﬁmB_

The C shell keeps a record of the commands entered from the
keyboard; These can be recalled, edited, and executed at a later
stage. The meta character ! gives access to the history of commands.

Numbered commands:

set prompt = ’\! % ’ # set prompt to include command/event number
set history = 40 # remember last 40 commands

set savehist = 32 # save last 32 commands between sessions
alias h history # h is an alias for history which lists

the history

Command Reexecution:

I replaced with text of last command

I num replaced with text of command numbered num

lprefix replaced with the most recent command which
started with prefix

| ?7substring? replaced with text of the most recent command
containing substring

Accessing pieces of a previous command: (These modifiers can be
placed immediately after event specifier)

:0 first token

:number (number+1)st token

:start-end (start+1l) through (end+1) tokens

B first token (colon optional)

:$ last token (colon optional)

D% second through last token (colon optional)

48 7, echo I like horseback riding
49 % '1:0 111 112 11:4

echo I like riding

I like riding

50 % echo !48:1-$

echo I like horseback riding

I like horseback riding

Accessing portions of filenames

If the token extracted is a file name, the various parts of
the filename can be extracted as follows:
let filename be /usr/include/stdio.h

head /usr/include

root /usr/include/stdio
extension h

tail stdio.h

53 % 1ls /usr/include/stdio.h
/usr/include/stdio.h

54 % echo !53:1:h
/usr/include

History substitution: !event:s/sss/ttt/

Control Structures

- If a control structure is entered on the keyboard on several lines,
the C shell prompts with a 7 for each subsequent line.

- foreach...end
foreach name (wordList)
command-list # break/continue can be used as commands
end

example:

foreach color (red blue green)
echo $color

end

- goto name
example:

echo gotta jump
goto end0fScript

echo I will never echo this
end0fScript:
echo the end

if..then

_else. .endif]

- if (expr) command
% if (5 > 3) echo five is greater than 3

- if (exprl) then
commands1
else if (expr2) then
commands?2
else
commands3
endif

#!/bin/csh
echo -n "enter a number: "
set number = $<
if ($number < 0) then
echo negative
else if ($number == 0) then
echo zero

else
echo positive
endif

- onintr label

#!/bin/csh
onintr controlC
while (1)
echo infinite loop
sleep 2

end
controlC:
echo control C detected

- repeat expr command
%y repeat 2 echo Hi there
- switch. .case..endsw

switch (expr)
case patternl:
commands1
breaksw
case pattern2:
case patternd:
commands?2

breaksw
default:
defaultCommands
endsw

#!/bin/csh
echo menu test program
set stop = 0
while ($stop == 0)
cat << ENDOFMENU
1 : print the date
2,3 : print the current working directory
4 : exit
ENDOFMENU
echo
echo -n ’your choice: ’
set reply = $<
switch ($reply)
case "1":
date
breaksw
case "2":
case "3":
pwd
breaksw
case "4":
set stop =1
breaksw
default:
echo illegal choice
breaksw
endsw
end

- while (expr)

commandList
end
#!/bin/csh
set x =1 # set outer loop value
while ($x <= $1) # outer loop
set y =1 # set inner loop value
while ($y <= $1) # inner loop
Qv = $x * $y # calculate entry
echo -n $v " . # display entry
Qy ++ # update inner loop counter
end
echo "" # newline
Q@ x ++ # update outer loop counter
end
% multi.csh 4
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Sample Project: Ebwbmv_

/bin/csh

junk script
author: Graham Glass

#
#
#
9/25/91
#
#

Initialize variables

#

set
set
set
set
set

filelList
listFlag

() # a list of all specified files.
O # set to 1 if -1 option is specified.

purgeFlag = 0 # 1 if -p option is specified.
fileFlag = 0 # 1 if at least one file is specified.
junk = “/.junk # the junk directory.

#
Parse command line
#
foreach arg ($*)
switch ($arg)
case "-p'":
set purgeFlag =1
breaksw
case "-1":
set listFlag =1
breaksw
case —*:
echo $arg is an illegal option
goto error
breaksw
default:
set fileFlag = 1
set fileList = ($filelList $arg) # append to list
breaksw

endsw
end

#
Check for too many options
#
@ total = $listFlag + $purgeFlag + $fileFlag
if ($total != 1) goto error
#
If junk directory doesn’t exist, create it
#
if (!(-e $junk)) then
‘mkdir’ $junk

endif

#

Process options

#

if ($listFlag) then
’1s’ -1gF $junk # list junk directory.
exit O

endif

#

if ($purgeFlag) then
’rm’ $junk/* # remove contents of junk directory.
exit O

endif

#

if ($fileFlag) then

‘mv’ $fileList $junk # move files to junk directory.
exit O
endif
#
exit 0
#
Display error message and quit
#
error:
cat << ENDOFTEXT
Dear $USER, the usage of junk is as follows:
junk -p means "purge all files"

junk -1 means "list junked files"

junk <list of files> to junk them
ENDOFTEXT
exit 1

Enhancements]|

- Command reexecution: A shortcut
“sssTttt
would replace sss in the previous command with ttt

- Metacharacters {}

% cp /usr/include/{stdio,signall}.h
coplies two files in one command

- Filename Substitution

* Disabling filename substitution
% set noglob
% echo ax
ax

* No-match situations
% echo ax px
pl.c p2.c
% echo a* bx
echo: no match

% set nonomatch # causes wildcard to be disabled if no match
% echo ax bx
ax bx

- Protecting files from accidental overwrites
/» set noclobber
% cat a.c > b.c
errors: file exists

- Redirecting the standard error channel (use >& and >>&)

h cc a.c >& errors # error messages sent to file;

T

- To send std. output and error along pipeline use |&

% jobs -1

Job Control|

lists all jobs (background processes) currently active

specifying a job:

hinteger
hprefix
T+

Tols

o

% bg %job

using job number (PID)

jobs beginning with prefix
last referenced job

same as $+

second to last referenced job

places job in the background (used with suspended jobs)
if no job specified, last referenced job is used

%h fg %hjob

brings job to foreground
if no job specified, last referenced job is used

% stop %job
suspends job
if no job specified, last referenced job is used

% suspend
suspends the shell that invokes the command; useful only
when shell was invoked as a child process

%» nice integer command
sets the run level priority for the command (larger the number
lower the priority; default = 4; negative numbers can be

used by super user only)

- Terminating the login shell

% set ignoreeof # prevents "D logout
% exit

.logout file is executed by login shell when it terminates

Some built-in commands:
% chdir # works same as cd

% glob # works same as echo except it NULL terminates its output
useful in C programs.

% source file
executes commands stored in file

Directory Stack:

%» pushd dir # same as cd except current dir is pushed on stack

% popd

read details

- Hash table of executables in $PATH directories (to speed up)
- Whenever a new executable is added to a directory in $PATH, use
%» rehash

to reconstruct hash table.

% unhash

disables hash table; slows search process

