Ch. 3 The UNIX Shells (Bourne shell, Korn shell, C shell)

- To change your default shell use the chsh utility
- To examine your default shell, type
echo $SHELL

CORE Shell Functionality:

- Built-in commands

- Scripts

- Variables (local, environment)

- Redirection

- Wildcards

- Pipes

- Sequences (conditional, unconditional)
- Subshells

- Background processing

- Command substitution

What does the shell do?]

When a shell is invoked, either automatically upon login or manually
from the keyboard or script, the following takes place:

(1) It reads a special startup file (.cshrc for csh in the user’s
home directory) and executes all the commands in that file

(2) It displays a prompt and waits for a user command

(3) If user enters CTRL-D (end of input); the shell terminates
otherwise it executes the user command

User commands:
$ 1s

$ ps —ef | sort | ul -tdumb | 1p

$ 1s | sort | \

Built-in commands

- Most Unix commands invoke utility programs stored in the file
hierarchy (ex. ls, vi etc); The shell has to locate the utility
in the file system (using PATH variable)

- Shells have built-in commands; Two important ones: echo, cd
- echo arguments
$ echo Hi, How are you?

Hi, How are you?

echo by default appends a new line (to inhibit new line use -n optio
in csh)

- cd dir

Metacharacters|

> Output redirection (writes std. output to file)

>> Output redirection (appends std. output to file)

< Input redirection (reads std. input from file)

* File-substitution wildcard; matches 0 or more characters

? File-substitution wildcard; matches any single character

[...] File-substitution wildcard; matches any character within brackefs
¢

command‘ Command substitution; replaced by the output of command
| Pipe; send output of one process to the input of another

; Used to sequence commands

| | Conditional execution; execute command if previous one fails
&& Conditional execution; execute command if previous one succeeds
(...) Group commands
& Run command in background
Comment (rest of characters ignored by shell)
$ Expand the value of a variable
\ Prevent special interpretation of character that follows
<<tok Input redirection; read std. input until tok.

Redirection

- The shell redirection facility allows you to
store the output of a process to a file
use the contents of a file as input to a process

- cat xl.c > y.c
- cat x2.c >> y.c
- mail tony < hiMom

- The <<tok redirection is almost exclusively used in shell scripts
(will see this later)

$ 1s
$ 1s
$ 1s
$ 1s
$ 1s

*.C

?7.C

[ac]*
[A-Za-z]*
dir*/*.c

list
list
list
list
list

Filename substitution|

.c files

files such as a.c, b.c, 1.c, etc
files starting with a or c

files beginning with a letter

all .c files in directories starting with dir

w:u@m_

$ commandl | command2 | command3

$ 1s
ppp00* ppp24* ppp48* ppp72*
$ 1s | we -w

4
$ head -4 /etc/passwd
root:fjQyH/FG3TJcg:0:0:root:/root:/bin/sh
bin:*:1:1:bin:/bin:
daemon:*:2:2:daemon:/sbin:
adm:*:3:4:adm:/var/adm:

$ cat /etc/passwd | awk -F: ’{print $1}’ | sort
adm

bin

daemon

raj

tee utility

$ tee -ia filename
causes standard input to be copied to file and also sent to standard
output. (-a option appends to file; -i option ignores interrupts)

$ who
raj ttyl Jun 19 09:31
naveen ttypO0 Jun 19 20:17 (localhost)

$ who | tee who.capture | sort
naveen ttyp0 Jun 19 20:17 (localhost)
raj ttyl Jun 19 09:31

$ more who.capture
raj ttyl Jun 19 09:31
naveen ttypO0 Jun 19 20:17 (localhost)

Command Substitution |

- A command surrounded by grave accents (‘) is executed and its
standard output is inserted in the command’s place in the command

line.

$ echo today is ‘date
today is Sat Jun 19 22:23:28 EDT 1999

$ echo there are ‘who | wc -1¢ users on the system
there are 2 users on the system

$

$

Sat Jun 19 22:33:19 EDT 1999
/home/raj/oracle
jdbc/ ows/ proc/ sql/ sqlj/ who.capture

m®@c®50@m_

Commands or pipelines separated by semi-colons
Each command in a sequence may be individually I/0 redirected.
date; pwd; 1s

date > date.txt; 1ls pwd > pwd.txt

Conditional sequences:
cc myprog.c && a.out
cc myprog.c || echo compilation failed

In a series of commands separated by &&, the next command is execute
if the previous one succeeds (returns an exit code of 0)

In a series of commands separated by || the next command is executed
the previous one fails (returns an exit code of non-zero)

Grouping commands

- Commands can be grouped by putting them within parentheses
(a sub shell is created to execute the grouped commands)

$ (date; 1ls; pwd) > out.txt
$ more out.txt

Sat Jun 19 22:40:43 EDT 1999
date.txt

jdbe/

out.txt

ows/

proc/

pwd.txt

sql/

sqlj/

who.capture
/home/raj/oracle

Background wﬁoommmgm_

An & sign can follow a simple command, pipeline, sequence
of pipelines, or a group of commands

This starts a sub-shell and the commands are executed from
the sub-shell as a background process which does not take
control of the keyboard.

A process id is displayed when a background process begins

To prevent output from a background process to come to
the terminal, you may redirect the output to a file.

Background process cannot read from standard input; If they
attempt to read from standard input; they terminate.

Shell Programs/Scripts _

- Any series of shell commands may be stored in a text file
for execution.

- Use the chmod utility to set execute permissions on the file
before executing it by simply typing the file name.

- When a script runs, the system determines which shell the
script was written for; The rules are:

* if the first line of the script is a pound sign (#),

then the script is interpreted by the shell from which

the script is executed.
* 1if the first line of the script is of the form

#!/bin/sh or #!/bin/ksh etc

then the appropriate shell is used to interpret the script
* else the script is interpreted by the Bourne shell.
* Note: pound sign on 1st column in any other line implies a

comment line

- Always recommended to use #!pathname

#!/bin/csh

A simple C-shell script
echo -n "The date today is "
date

Subshells|

- Within a login shell there are several ways a subshell can
be created:
* grouped command (1ls; pwd; date)
* Script execution
* Background processes

- A subshell has its own working directory; cd commands in subshell
do not change working directory of parent shell

- Every shell has two data areas: an environment space and
a local-variable space; When a child shell is created it
gets a copy of the parent’s environment space but starts

with an empty local-variable space.

Variables

— A shell supports two kinds of variables: local and environment
variables. Both kinds hold data in string format.

- Every shell has a set of pre-defined environment variables and
local variables. Some pre-defined environment variables available

in all shells:

$HOME, $PATH, $MAIL, $USER, $SHELL, $TERM

- Accessing variables in all shells is done by prefixing the
name with a $ sign.

- Assigning values to variables is done differently in
different shells:

sh, ksh: wvariable=value
variable = "value"

To make a variable an environment variable in sh, ksh
export variable

csh: set variable=value
set variable = "value"

To assign environment variables
setenv TERM vt100

- Common built-in variables with special meaning:

$$ process ID of shell

$0 name of shell script (if applicable)

$1..89 $n refers to the nth command line argument
(if applicable)

$x a list of all command line arguments

$ cat script2.csh

#!/bin/csh

echo the name of this file is $0

echo the first argument is $1

echo the list of all arguments is $x

echo this script places the date into a temporary file called $1.$$
date > $1.$%

1s -1 $1.3$$

rm $1.$$

$ script2.csh paul ringo george john

the name of this file is ./script2.csh

the first argument is paul

the list of all arguments is paul ringo george john

this script places the date into a temporary file called paul.b54
-rw-rw-r-- 1 raj raj 29 Jun 20 21:33 paul.b554

$

Quoting

Single quotes (’) inhibit wildcard replacement,
variable substitution, and command substitution

Double quotes (") inhibits wildcard replacement only
When quotes are nested only the outer quotes have any effect

echo 3 *x 4 = 12
3.log 3.tex script.csh script2.csh 4 = 12

echo ’3 *x 4 = 12°
* 4 = 12

echo "my name is $USER; the date is ‘date‘"

my name is raj; the date is Sun Jun 20 21:59:13 EDT 1999

Here Documents]|

$ cat here.csh

mail $1 << ENDOFTEXT

Dear $1,

Please see me regarding some exciting news!
$USER

ENDOFTEXT

echo mail sent to $1

$ here.csh raj
mail sent to raj

$ mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/spool/mail/raj": 6 messages 1 new
5 raj@kamakshi.gsu.edu Sun Jun 20 22:13
>N 6 raj@kamakshi.gsu.edu Sun Jun 20 22:14
&
Message 6:
From raj Sun Jun 20 22:14:31 1999
Date: Sun, 20 Jun 1999 22:14:31 -0400
From: raj@kamakshi.gsu.edu
To: raj@kamakshi.gsu.edu

Dear raj,

Please see me regarding some exciting news!
raj

18/420
14/377

Job Control|

- ps command generates a list of processes and their attributes

- kill command terminates processes based on process ID

- wait allows the shell to wait for one of its child processes to
terminate.

$ ps -efl # e: include all running processes
£f: include full listing
1: include long listing

PID : process ID

- Bourne and Ksh automatically terminate background processes
when you log out (csh allows them to continue)

- To keep the background processes to continue in sh and ksh, use

$ nohup command

Signalling processes: Kkill

$ kill -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR

$ kill -signal pid
if signal is not specified the default signal is SIGTERM (15)
SIGKILL (9) is useful if the process refuses to die.

Waiting for child processes

$ (sleep 30; echo done 1) &

[1] 429

$ (sleep 30; echo done 2) &

[2] 431

$ echo done 3; wait; echo done 4

done 3

done 1

[1]- Done (sleep 30; echo done 1)
done 2

[2]+ Done (sleep 30; echo done 2)
done 4

This feature is used in advanced shell scripts.

Finding a command: $PATH]|

If the command is a shell built-in such as echo or cd it 1is
directly interpreted by the shell.

if the command begins with a / the shell assumes that the
command 1s the absolute path name of an executable;
error occurs if the executable is not found.

if the command is not a built-in and not a full pathname,

the shell searches the directory names that are stored in the
PATH environment variable from left to right for an executable
that matches the command.

Normally, the current working directory is included in the
PATH variable.

- If PATH is empty or 1is not set, only the current working
directory is searched for the executable.

- Homebrewed utilities: Some Unix users create their own
versions of some Unix utilities and store them in their
bin directory; Then they place their bin directory ahead of
all other directories so that their version of the utility is

executed.

Termination and Exit codes:]

Every Unix process terminates with an exit value.

By convention, a O value means success and a non-zero value means
failure

All built-in commands return 1 when they fail

The special variable $7 contains the exit code of the last command
execution. In csh $status also contains the exit code.

Any script written by you should contain the exit command:
exit number

If the script does not exit with a exit code, the exit code of
the last command is returned by default.

Common Core Built-in commands]

- eval command
The eval shell command executes the output of the command
as a regular shell command.
$ eval ‘echo x=5°
$ echo $x
5

- exec command
The exec shell command causes the shell’s image to be
replaced with the command in the process’ memory space.
As a result, if the command terminates, the shell also
ceases to exist; If the shell was a login shell,

the login session terminates.

shift

This command causes all of the positional parameters $2..$n
to be renamed $1..$(n-1) and $1 is lost.

Useful in processing command line parameters.

#!/bin/csh

echo first argument is $1, all args are $x
shift

echo first argument is $1, all args are $x

$ script3.csh abcd
first argument is a, all args are a b c d

first argument is b, all args are b c d

- Every Unix process has a special quantity called umask value.
The default value is 022 octal

- Whenever a file is created (say by vi or by redirection), the
file permissions, which is usually 666, is masked (xor) with
umask value say 022 to produce the permission 644

- To change umask value use the command

$ umask octalValue

- To see current umask value use the command

$ umask

