Propositional Logic

Syntax

Alphabet: consists of the following types of symbols:

- Truth symbols: 0, 1
- Propositional Symbols: P, Q, R, A, B, C, ...
- Propositional Connectives: \land , \lor , \rightarrow , \leftrightarrow , \neg
- Parenthesis: (and)

Well-Formed Formulas (wff): A well-formed formula over a given alphabet is a sentence created using the following rules:

- 1. 0 is a wff; 1 is a wff.
- 2. Any propositional symbol, P, is a wff.
- 3. If E1 and E2 are wffs then so are:
 - a. (¬E1)
 - b. $(E1 \land E2)$
 - c. (E1 ∀E2)
 - d. (E1 \rightarrow E2)
 - e. (E1 \leftrightarrow E2)
- 4. Nothing else is a wff.

Some examples of wffs:

- 1. 0
- 2. 1
- 3. P
- 4. $(P \land Q)$
- 5. $((\neg P) \land (\neg Q))$
- 6. $((P \rightarrow Q) \leftrightarrow (\neg Q))$
- 7. $((((P \land Q) \rightarrow (R \land S)) \lor (P \land (\neg Q))) \leftrightarrow ((0 \lor P) \lor (1 \rightarrow Q)))$

Some examples of strings that are not wffs:

- 1. P(¬Q)
- 2. $P \land Q \rightarrow$
- 3. $\land P \lor Q$
- 4. (P ∇ Q) & R
- 5. $P \land Q \rightarrow R \land S$

Note: This would be treated as a wff if rules of precedence for operators are considered; The formula would be $((P \land Q) \rightarrow (R \land S))$

Question: Why is $((P \rightarrow Q) \leftrightarrow (\neg Q))$ a wff? Answer: The following steps show how to construct the wff using the syntactic definition of wffs:

- 1. P is a wff, Rule 2 of wff definition
- 2. Q is a wff, Rule 2 of wff definition
- 3. $(P \rightarrow Q)$ is a wff, Rule 3d of wff definition
- 4. $(\neg Q)$ is a wff, Rule 3a of wff definition
- 5. $((P \rightarrow Q) \leftrightarrow (\neg Q))$ is a wff, Rule 3e of wff definition

Semantics (Meaning)

Interpretation: An interpretation, I, for a wff E is an assignment of truth values (T or F) to each of the propositional symbols in E.

Example: Consider the wff ($(P \land Q) \rightarrow R$). There are 8 different interpretations for the wff as ther are 3 propositional symbols or variables and each can be assigned 2 values. These different interpretations are shown below:

	P	Q	R
I1	Т	Т	Т
I2	Т	Т	F
I3	T	F	T
I4	Т	F	F
I5	F	Т	Τ
I6	F	Τ	F
I7	F	F	Τ
I8	F	F	F

In general, if there are n propositional symbols in a wff, the total number of different interpretations will be 2^{n} .

Meaning (truth value) of wffs: Let E be a wff and I be an interpretation for E. Then, the *truth value of E under I* is evallated as follows:

- 1. The wff 0 has the value F; the wff 1 has the value T.
- 2. The truth value of a propositional symbol, P, is the same as the truth value assigned to P by I.
- 3. Let E1 and E2 be two wffs. Then,
 - a. $(\neg E1)$ has the value T if E1 has the value F; $(\neg E1)$ has the value F if E1 has the value T.
 - b. $(E1 \land E2)$ has the value T if both E1 and E2 have the value T;
 - (E1 \land E2) has the value F otherwise.

- c. (E1 ∀E2) has the value T if E1 has the value T or E2 has the value T;
 (E1 ∀E2) has the value F otherwise.
- d. (E1 \rightarrow E2) has the value T if E1 has the value F or E2 have the value T; (E1 \rightarrow E2) has the value F otherwise (i.e. if E1 has the value T and E2 has the value F).
- e. (E1 \leftrightarrow E2) has the value T if both E1 and E2 have the same truth value; (E1 \leftrightarrow E2) has the value F otherwise.

Part 3. of the above definition can be summarized by the following tables:

E1	(¬ E1)
Т	F
F	Т

E1	E2	(E1 ^ E2)	(E1 VE2)	$(E1 \rightarrow E2)$	(E1 ↔ E2)
Τ	Т	Т	Т	Т	Т
Τ	F	F	Т	F	F
F	Τ	F	Т	Т	F
F	F	F	F	Т	Т

Question: What is the truth value of the wff ($(P \land Q) \rightarrow R$) under the interpretation { $P \leftarrow T, Q \leftarrow F, R \leftarrow T$ }.

Answer: The following steps show the calculation of the truth value.

- 1. P has the truth value T, Rule 2 meaning of wff
- 2. Q has the truth value F, Rule 2 meaning of wff
- 3. $(P \land Q)$ has the truth value F, Rule 3b meaning of wff
- 4. R has the truth value T, Rule 2 meaning of wff
- 5. $((P \land Q) \rightarrow R)$ has the truth value T, Rule 3d meaning of wff

Question: What is the truth value of the wff $((P \rightarrow Q) \leftrightarrow ((\neg P) \lor Q))$ under the interpretation { $P \leftarrow T, Q \leftarrow F$ }.

Answer: The following steps show the calculation of the truth value.

- 1. P has the truth value T, Rule 2 meaning of wff
- 2. Q has the truth value F, Rule 2 meaning of wff
- 3. $(P \rightarrow Q)$ has the truth value F, Rule 3d meaning of wff
- 4. $(\neg P)$ has the truth value F, Rule 3a meaning of wff
- 5. $((\neg P) \lor Q)$ has the truth value F, Rule 3c meaning of wff
- 6. $((P \rightarrow Q) \leftrightarrow ((\neg P) \forall Q))$ has the truth value T, Rule 3e meaning of wff

Some Properties of WFFs

- A wff E is *valid* if it has the value T under every interpretation of E. Valid wffs are often called *tautologies* in propositional logic.
- A wff E is *satisfiable* if it has the value T under some (at least one) interpretation of E.
- A wff E is *contradictory* if it has the value F under every interpretation of E.
- A wff E1 *implies* a wff E2 if for any interpretation I for E1 and E2, if E1 has the value T under I then E2 also has the value T under I. (written as $E1 \Rightarrow E2$)
- Two wffs E1 and E2 are *equivalent* if for any interpretation I for E1 and E2, both E1 and E2 have the same value under I. (written as E1 ⇔ E2)

Examples

- 1. $((P \rightarrow Q) \leftrightarrow ((\neg P) \lor Q))$ is valid.
 - The wff has 2 propositional symbols; So, there are 4 possible interpretations:
 - a. I1 = { $P \leftarrow T, Q \leftarrow T$ }
 - $(P \rightarrow Q)$ evaluates to T
 - $(\neg P)$ evaluates to F
 - $((\neg P) \lor Q)$) evaluates to T
 - $((P \rightarrow Q) \leftrightarrow ((\neg P) \lor Q))$ evaluates to T
 - b. I2 = { $P \leftarrow T, Q \leftarrow F$ }
 - $(P \rightarrow Q)$ evaluates to F
 - $(\neg P)$ evaluates to F
 - $((\neg P) \lor Q)$) evaluates to F
 - $((P \rightarrow Q) \leftrightarrow ((\neg P) \lor Q))$ evaluates to T
 - c. I3 = { $P \leftarrow F, Q \leftarrow T$ }
 - $(P \rightarrow Q)$ evaluates to T
 - $(\neg P)$ evaluates to T
 - $((\neg P) \lor Q)$) evaluates to T
 - $((P \rightarrow Q) \leftrightarrow ((\neg P) \lor Q))$ evaluates to T
 - d. I4 = { $P \leftarrow F, Q \leftarrow F$ }
 - $(P \rightarrow Q)$ evaluates to T
 - $(\neg P)$ evaluates to T
 - $((\neg P) \lor Q)$) evaluates to T
 - $((P \rightarrow Q) \leftrightarrow ((\neg P) \lor Q))$ evaluates to T

We see that in each of the 4 interpretations the wff evaluates to T. So, it is valid.

- 2. $((P \rightarrow Q) \leftrightarrow (P \lor Q))$ is satisfiable.
 - Consider the interpretation $I = \{ P \leftarrow T, Q \leftarrow T \}.$
 - P has the value T
 - $\circ \quad Q \text{ has the value } T$
 - $\circ \quad (P \to Q) \text{ has the value } T$
 - $\circ \quad (P \; \forall Q) \text{ has the value } T$
 - $\circ \quad ((P \to Q) \leftrightarrow (P \lor Q)) \text{ has the value } T$

Since the wff evaluates to T under I, we say that the wff is satisfiable.

1. $(\neg (P \rightarrow P))$ is contradictory.

The wff has 1 propositional symbol; So, there are 2 possible interpretations:

- a. I1 = { $P \leftarrow T$ }
 - $(P \rightarrow P)$ evaluates to T
 - $(\neg (P \rightarrow P))$ evaluates to F
- b. I2 = { $P \leftarrow F$ }

• $(P \rightarrow P)$ evaluates to T

• $(\neg (P \rightarrow P))$ evaluates to F

We see that in each of the 2 interpretations the wff evaluates to F. So, it is contradictory.

1.
$$(\neg P) \Rightarrow (P \rightarrow Q)$$

The wff has 2 propositional symbols; So, there are 4 possible interpretations:

- a. I1 = { $P \leftarrow T, Q \leftarrow T$ }
 - $(\neg P)$ evaluates to F
 - So, we do not have to check the value of $(P \rightarrow Q)$
- b. I2 = { $P \leftarrow T, Q \leftarrow F$ }
 - $(\neg P)$ evaluates to F
 - So, we do not have to check the value of $(P \rightarrow Q)$
- c. I3 = { $P \leftarrow F, Q \leftarrow T$ }
 - $(\neg P)$ evaluates to T
 - $(P \rightarrow Q)$ also evaluates to T
- d. I4 = { $P \leftarrow F, Q \leftarrow F$ }
 - $(\neg P)$ evaluates to T
 - $(P \rightarrow Q)$ also evaluates to T

So, we see that in each interpretation where $(\neg P)$ evaluates to T, $(P \rightarrow Q)$ also evaluates to T. So, $(\neg P) \Rightarrow (P \rightarrow Q)$

2. $(P \rightarrow Q) \Leftrightarrow ((\neg Q) \rightarrow (\neg P))$

The wff has 2 propositional symbols; So, there are 4 possible interpretations:

- a. I1 = { $P \leftarrow T, Q \leftarrow T$ }
 - $(P \rightarrow Q)$ evaluates to T
 - $(\neg Q)$ evaluates to F
 - $(\neg P)$ evaluates to F
 - $((\neg Q) \rightarrow (\neg P))$ evaluates to T
- b. $I2 = \{ P \leftarrow T, Q \leftarrow F \}$
 - $(P \rightarrow Q)$ evaluates to F
 - $(\neg Q)$ evaluates to T
 - $(\neg P)$ evaluates to F
 - $((\neg Q) \rightarrow (\neg P))$ evaluates to F
- c. I3 = { $P \leftarrow F, Q \leftarrow T$ }
 - $(P \rightarrow Q)$ evaluates to T

- $(\neg Q)$ evaluates to F
- $(\neg P)$ evaluates to T
- $((\neg Q) \rightarrow (\neg P))$ evaluates to T

d. I4 = {
$$P \leftarrow F, Q \leftarrow F$$
 }

- $(P \rightarrow Q)$ evaluates to T
- $(\neg Q)$ evaluates to T
- $(\neg P)$ evaluates to T
- $((\neg Q) \rightarrow (\neg P))$ evaluates to T

In all 4 interpretations both $(P \rightarrow Q)$ and $((\neg Q) \rightarrow (\neg P))$ evaluate to the same truth value. Hence, $(P \rightarrow Q) \Leftrightarrow ((\neg Q) \rightarrow (\neg P))$

Informal Terminology: For two English sentences A and B, we say that A iff B, i.e. A if and only if B, to indicate that (a) A is true if B is true and (b) B is true if A is true.

Remarks: Let E1 and E2 be two wffs. Then,

- 1. E1 is satisfiable iff $(\neg E1)$ is not valid.
- 2. E1 is contradictory iff $(\neg E1)$ is valid.
- 3. $E1 \Rightarrow E2$ iff $(E1 \rightarrow E2)$ is valid
- 4. $E1 \Leftrightarrow E2$ iff ($E1 \leftrightarrow E2$) is valid
- 5. $E1 \Leftrightarrow E2$ iff $E1 \Rightarrow E2$ and $E2 \Rightarrow E1$

These remarks express all properties of wffs in terms of validity of a given wff.

To establish Validity of wffs:

1. Method 1: Truth Table (wff is valid if true under all interpretations) Example: Consider ((\neg (A \lor B) \leftrightarrow ((\neg A) \land (\neg B)))

AE	3	((¬	(A	F	B)	\leftrightarrow	((¬	A)	٨	(¬	B)))
ТТ	` [[F	Т	Т	Т	Т	F	Т	F	F	Т
TF	•	F	Т	Т	F	Т	F	Т	F	Т	F
FI		F	F	Т	Т	Т	Т	F	F	F	Т
FF	•	Т	F	F	F	Т	Т	F	Т	Т	F
						All T					

- 2. The wff is VALID because we observe all Ts in the main connective (\leftrightarrow) column.
- Method 2: Proof by Contradiction (Assume wff evaluates to F and then show that some propositional symbol gets assigned both T and F).
 Example: Consider wff ((A → B) → ((¬B) → (¬A))). Assume the wff evaluates to F in some interpretation. Then the following reasoning steps apply:

- \circ (A \rightarrow B) must evaluate to T
- ∘ $((\neg B) \rightarrow (\neg A))$ must evaluate to F.
- \circ (\neg B) must evaluate to T
- \circ (\neg A) must evaluate to F
- o B must evaluate to F
- o A must evaluate to T
- So, $(A \rightarrow B)$ must evaluate to F. CONTRADICTION.

So, the wff must be valid.

Proofs and Simplification

Well known logical equivalences (E1-E30) and logical implications (I1-I20). We can use these equivalences to simplify wffs. We can use equivalences and implications in proofs.

Simplification

Example 1: Simplify $((P \rightarrow Q) \land ((\neg P) \rightarrow Q))$

	Reason
$((\mathbf{P} \to \mathbf{Q}) \land ((\neg \mathbf{P}) \to \mathbf{Q}))$	Given
$\Leftrightarrow ((\neg P) \lor Q) \land ((\neg (\neg P)) \lor Q))$	E12, twice
$\Leftrightarrow ((\neg P) \lor Q) \land (P \lor Q))$	E11
$\Leftrightarrow (\mathbf{Q} \lor (\neg \mathbf{P})) \land (\mathbf{Q} \lor \mathbf{P}))$	E4
$\Leftrightarrow (Q \lor ((\neg P) \land P))$	E10
$\Leftrightarrow (Q \ \lor (P \land (\neg P)))$	E4
$\Leftrightarrow (Q \ \forall 0)$	E22
\Leftrightarrow Q	E19

Example 2: Simplify $(P \rightarrow (\neg (P \land (\neg Q)))$

Reason
$$(P \rightarrow (\neg (P \land (\neg Q))))$$
Given $\Leftrightarrow ((\neg P) \lor (\neg (P \land (\neg Q))))$ E12 $\Leftrightarrow (\neg (P \land (P \land (\neg Q))))$ E8 $\Leftrightarrow (\neg ((P \land P) \land (\neg Q))))$ E8 $\Leftrightarrow ((\neg (P \land (\neg Q))))$ E2 $\Leftrightarrow ((\neg P) \lor (\neg (\neg Q))))$ E8 $\Leftrightarrow ((\neg P) \lor (\neg (\neg Q))))$ E11 $\Leftrightarrow (P \rightarrow Q)$ E12

Formal Proofs

- A *theorem* with hypotheses H1, H2, ..., Hn and conclusion C is true if (H1 \land H2 \land ... \land Hn) \Rightarrow C
- A *formal proof (valid argument)* of a theorem consists of a sequence of wffs ending with C, where each wff may be
 - 1. one of the hypotheses, or
 - 2. a known tautology, or
 - 3. derived from wffs earlier in the sequence via the substitution rule, or
 - 4. inferred from earlier wffs according to certain logical implications or equivalences.

Example:

Consider the following argument: If I study or if I am a genius, then I will pass the course. If I pass the course, then I will be allowed to take the next course. Therefore, if I am not allowed to take the next course, then I am not a genius.

Let

S: I study.

G: I am a genius.

P: I will pass the course.

A: I will be allowed to take the next course.

Then, the theorem to be proved is

H1: $(S \lor G) \rightarrow P$ H2: $P \rightarrow A$ C: $(\neg A) \rightarrow (\neg G)$

Proof:

Step	Reason
1. (S \forall G) \rightarrow P	H1
2. $P \rightarrow A$	H2
3. (S \forall G) \rightarrow A	1,2; I8
4. (¬ (S ⊦G)) ∀A	3; E12 (substitution)
5. $((\neg S) \land (\neg G)) \lor A$	4; E7
6. $((\neg S) \lor A) \land ((\neg G) \lor A)$	5; E10
7. (¬G) ∀A	6; I4
8. $(G \rightarrow A)$	7; E12
9. $(\neg A) \rightarrow (\neg G)$	8; E14