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One-Dimensional Arrays 
•  In an array, all data items (known as elements) 

must have the same type. 
•  An array can be visualized as a series of boxes, 

each capable of holding a single value belonging 
to this type: 

•  An array whose elements are arranged in a linear 
fashion is said to be one-dimensional. 
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Creating Arrays 
•  An array declaration contains [], element can 

be of any type, e.g., objects: 
 int[] a;    or int a[]; 

 String[] b;   or String b[]; 

•  Declaring an array variable doesn’t allocate space 
for the array’s elements. One way to allocate this 
space is to use new keyword: a = new int[10]; 

•  Be careful not to access the elements of an array 
before the array has been allocated. Doing so will 
cause a NullPointerException to occur. 
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Creating Arrays 
•  Allocate space when the array is declared: 
 int[] a = new int[10]; 

 int n = 10; 
 int[] a = new int[n]; 

•  An array can be initialized at the time it’s declared: 
 int[] a = {3, 0, 3, 4, 5}; 

–  The word new isn’t used if an initializer is present. 

•  When an array is created using new, the elements of 
the array are given default values: 
–  Numbers are set to zero. 
–  boolean elements are set to false. 
–  Array and object elements are set to null. 
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Visualizing Arrays 
•  Each array element has an index, or subscript, that 

specifies its position within the array. 
–  only the numbers between 0 and n – 1 are valid indexes. 
–  n=9 

•  a[i] represents the ith element in array a. 
•  An array subscript can be any expression, provided 

that it evaluates to an int value. 
 a[0], a[i], a[2*i-1] 
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Array Subscripting 
•  Access a nonexistent array element causes an error 

named ArrayIndexOutOfBoundsException. 
•  An array element behaves just like a variable of the 

element’s type: 
 a[i] = 10; 
 System.out.println(a[i]); 

•  If the elements of an array are objects, they can call 
instance methods. 
–  if the array b contains String objects, the call 
b[i].length() would return the length of the string 
stored in b[i]. 
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Processing the Elements in an Array 
•  The number of elements in an array a is given by 

the expression a.length. 
•  A loop that adds up the elements in the array a, 

leaving the result in the sum variable: 
 int sum = 0; 
 int i = 0; 
 while (i < a.length) { 
   sum += a[i]; 
   i++; 
 } 
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Exercise: Write a Program 
•  The MaxScores program generates  n=10 random scores 

in 0 – 100,   computes the average and finds the max score. 
Output the average and max scores.  of a series of scores 
entered by the user: 

   

•  Try 1:  ask the users to type in n and the scores from the 
keyboard 

•  Try2: check the validity of user’s type and  repeat until 
legal input is obtained.  
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General Form of the for Statement 
•  Form of the for statement: 
 for ( initialization ; test ; update ) 
   statement 

•  Initialization is an initialization step that’s 
performed once, before the loop begins to execute. 

•  Test controls loop termination (the loop continues 
executing as long as test is true). 

•  Update is an operation to be performed at the end 
of each loop iteration. 
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for Statements Versus while Statements 
 is equivalent to the following while loop: 
 initialization ; 
 while ( test ) { 
   statement 
   update ; 
 } 
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for Statements Versus while Statements 
•  A for statement: 
 for (i = 10; i > 0; i--)  
   System.out.println("T minus " + i + 
                       " and counting"); 

•  An equivalent while statement: 
 i = 10; 
 while (i > 0) { 
   System.out.println("T minus " + i + 
                       " and counting"); 
   i--; 
 } 

•  uses --i instead of i-- 
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for Statement Idioms 
•  Typical ways to write a for statement 

 Counting up from 0 to n – 1:  for (i = 0; i < n; i++) … 

 Counting up from 1 to n:  for (i = 1; i <= n; i++) … 

 Counting down from n – 1 to 0: for (i = n - 1; i >= 0; i--) … 
 Counting down from n to 1:  for (i = n; i >= 1; i--) … 

•  initialization, test, and update parts need not be related. 
•  The three parts that control a for loop are optional—any or 

all can be omitted. 
–  When both initialization and update are omitted, same as while loop   

–  If the test part is missing, it defaults to true, so the for 
statement doesn’t terminate,  for (;;) 

–  The break cause the loop to terminate. 
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Declaring Control Variables 
•  For convenience, the initialization part of a for 

statement may declare a variable: 
 for (int i = 0; i < n; i++) 
   … 

•  A variable declared in this way can’t be accessed 
outside the loop. (The variable isn’t visible 
outside the loop.) 

•  It’s illegal for the enclosing method to declare a 
variable with the same name. It is legal for two 
for statements to declare the same variable, 
however. 
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Declaring Control Variables 
•  Having a for statement declare its own control 

variable is usually a good idea. It’s convenient, 
and it can make programs easier to understand. 

•  More than one variable can be declared in 
initialization, provided that all variables have the 
same type: 

 for (int i = 0, j = 0; i < n; i++) 
   … 
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Commas in for Statements 
•  In a for statement, both initialization and update 

are allowed to contain commas: 
 for (i = 0, j = 0; i < n; i++, j += i) 
   … 

•  Any number of expressions are allowed within 
initialization and update, provided that each can 
stand alone as a statement. 

•  When expressions are joined using commas, the 
expressions are evaluated from left to right. 

•  Using commas in a for statement is useful 
primarily when a loop has two or more counters. 
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Searching for a Particular Element 
•  One common array operation is searching an array 

to see if it contains a particular value: 
 int i; 
 for (i = 0; i < scores.length; i++) 
   if (scores[i] == 100) 
     break; 

•  An if statement can be used to determine whether 
or not the desired value was found: 

 if (i < scores.length) 
   System.out.println("Found 100 at position " + i); 
 else 
   System.out.println("Did not find 100"); 
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Processing Array Counting Occurrences 
•  Counting number occurrences 
 int count = 0; 
 for (int i = 0; i < scores.length; i++) 
   if (scores[i] == 100) 
     count++; 

•  Finding the largest (or smallest element) 
 int smallest = scores[0]; 
 for (int i = 1; i < scores.length; i++) 
   if (scores[i] < smallest) 
     smallest = scores[i]; 
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Exercise: Write a Program 
•  The RepeatedDigits program will determine which 

digits in a number appear more than once   
•  The program will examine number’s digits one at a time, 

incrementing one of the elements of digitCounts each 
time, using the statement 

 digitCounts[number%10]++; 

•  If number is originally 392522459, the digitCounts 
array will have the following appearance: 

 
•  Try 1:  use Scanner  
•  Try2:  how to count repeated number in a string 
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RepeatedDigits.java 
 

// Checks a number for repeated digits 
 

import jpb.*; 
 

public class RepeatedDigits { 
  public static void main(String[] args) { 
    // Prompt user to enter a number and convert to int 

form 
    SimpleIO.prompt("Enter a number: "); 
    String userInput = SimpleIO.readLine().trim(); 
    int number = Integer.parseInt(userInput); 
 

    // Create an array to store digit counts 
    int[] digitCounts = new int[10]; 
 

    // Remove digits from the number, one by one, and 
    // increment the corresponding array element 
    while (number > 0) { 
      digitCounts[number%10]++; 
      number /= 10; 
    } 
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    // Create a string containing all repeated digits 
    String repeatedDigits = ""; 
    for (int i = 0; i < digitCounts.length; i++) 
      if (digitCounts[i] > 1) 
        repeatedDigits += i + " "; 
 
    // Display repeated digits. If no digits are repeated, 
    // display "No repeated digits". 
    if (repeatedDigits.length() > 0) 
      System.out.println("Repeated digits: " + 
                         repeatedDigits); 
    else 
      System.out.println("No repeated digits"); 
  } 
} 
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Using Arrays as Vectors 
•  A for statement  scaling: αA = [αa1 αa2 … αan ] 
 double[] a = new double[n]; 
 for (int i = 0; i < a.length; i++) 
   a[i] *= alpha; 

•  The inner product, or dot product, of A and B is 
defined as follows: 
 A ⋅ B = a1b1 + a2b2 + … + anbn 

•  A loop that calculates the inner product 
 double innerProduct = 0.0; 
 for (int i = 0; i < a.length; i++) 
   innerProduct += a[i] * b[i]; 
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Parallel Arrays 
•  The first technique for storing a database is to use 

parallel arrays, one for each field. 
•  For example, the records in a phone directory 

would be stored in three arrays: 
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Parallel Arrays 
 int[] xCoordinates = new int[100]; 
 int[] yCoordinates = new int[100]; 

•  The values of xCoordinates[i] and 
yCoordinates[i] represent a single point. 

•  Parallel arrays can be useful. However, they suffer 
from two problems: 
–  It’s better to deal with one data structure rather than 

several. 
–  Maintenance is more difficult. Changing the length of 

one parallel array requires changing the lengths of the 
others as well. 
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Arrays of Objects 
•  The alternative to parallel arrays is to treat each 

record as an object, then store those objects in an 
array. 

•  A PhoneRecord object could store a name, 
address, and phone number. 

•  A Point object could contain instance variables 
named x and y. (The Java API has such a class.) 

•  An array of Point objects: 
 Point[] points = new Point[100]; 
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Creating a Database 
•  Consider the problem of keeping track of the 

accounts in a bank, where each account has an 
account number (a String object) and a balance 
(a double value). 

•  One way to store the database would be to use two 
parallel arrays: 

 String[] accountNumbers = new String[100]; 
 double[] accountBalances = new double[100]; 

•  A third variable would keep track of how many 
accounts are currently stored in the database: 

 int numAccounts = 0; 
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Creating a Database 
•  Statements that add a new account to the database: 
 accountNumbers[numAccounts] = newAccountNumber; 
 accountBalances[numAccounts] = newBalance; 
 numAccounts++; 

•  numAccounts serves two roles. It keeps track of 
the number of accounts, but it also indicates the 
next available “empty” position in the two arrays. 
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Creating a Database 
•  Another way to store the bank database would be 

to use a single array whose elements are 
BankAccount objects. 

•  The BankAccount class will have two instance 
variables (the account number and the balance). 

•  BankAccount constructors and methods: 
 public BankAccount(String accountNumber, 
                    double initialBalance) 
 public void deposit(double amount) 
 public void withdraw(double amount) 
 public String getNumber() 
 public double getBalance() 
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Creating a Database 
•  BankAccount objects will be stored in the 
accounts array: 

 BankAccount[] accounts = new BankAccount[100]; 

•  numAccounts will track the number of accounts 
currently stored in the array. 

•  Fundamental operations on a database: 
–  Adding a new record 
–  Deleting a record 
–  Locating a record 
–  Modifying a record 
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Adding a Record to a Database 
•  Adding a record to a database is done by creating 

a new object and storing it in the array at the next 
available position: 

 accounts[numAccounts] = 
   new BankAccount(number, balance); 
 numAccounts++; 

•  The two statements can be combined: 
 accounts[numAccounts++] = 
   new BankAccount(number, balance); 

•  In some cases, the records in a database will need 
to be stored in a particular order. 
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Removing a Record from a Database 
•  When a record is removed from a database, it 

leaves a “hole”—an element that doesn’t contain 
a record. 

•  The hole can be filled by moving the last record 
there and decrementing numAccounts: 

 accounts[i] = accounts[numAccounts-1]; 
 numAccounts--; 

•  These statements can be combined: 
 accounts[i] = accounts[--numAccounts]; 

•  This technique works even when the database 
contains only one record. 



Chapter 5: Arrays 

Java Programming 
FROM THE BEGINNING 

Copyright © 2000 W. W. Norton & Company. 
All rights reserved. 

31 

Searching a Database 
•  Searching a database usually involves looking for 

a record that matches a certain “key” value.  
•  Statements that search the accounts array for a 

record containing a particular account number: 
 int i; 
 for (i = 0; i < numAccounts; i++) 
   if (accounts[i].getNumber().equals(number)) 
     break; 

•  Once the loop has terminated, the next step is to 
test whether i is less than numAccounts. If so, 
the value of i indicates the position of the record. 
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Modifying a Record in a Database 
•  A record can be updated by calling a method that 

changes the object’s state. 
•  A statement that deposits money into the account 

located at position i in the accounts array: 
 accounts[i].deposit(amount); 

•  It’s sometimes more convenient to assign an array 
element to a variable, and then use the variable 
when performing the update: 

 BankAccount currentAccount = accounts[i]; 
 currentAccount.deposit(amount); 
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 Arrays as Objects 
•  Like objects, arrays are created using the new 

keyword. 
•  Arrays really are objects, and array variables have 

the same properties as object variables. 
•  An object variable doesn’t actually store an 

object. Instead, it stores a reference to an object. 
Array variables work the same way. 
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Properties of Object Variables 
•  Object variables have the following properties: 

–  When an object variable is declared, it’s not necessary 
for the variable to refer to an object immediately. 

–  The value of an object variable can be changed as often 
as desired. 

–  Several object variables can refer to the same object. 
–  When no variable refers to an object, it becomes 

eligible for garbage collection. 
–  Assigning one object variable to another causes only a 

reference to be copied; no new object is created. 
–  Testing whether two object variables are equal or not 

equal compares the references stored in the variables. 



Chapter 5: Arrays 

Java Programming 
FROM THE BEGINNING 

Copyright © 2000 W. W. Norton & Company. 
All rights reserved. 

35 

How Arrays are Stored 
•  An array variable contains a reference to where 

the array’s elements are stored.  
•  Storage for an array named a containing 10 

integers: 

•  Arrays are “garbage collected” in the same way as 
other objects. When there are no more references 
to an array, the space occupied by the array can be 
reclaimed automatically. 
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Copying Arrays 
•  If a and b are array variables of the same type, it's 

legal to write 
 b = a; 

•  The effect is that b now contains a reference to the 
same array as a: 
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Copying Arrays 
•  The assignment operator doesn’t make a true copy 

of an array. To make a genuine copy, there are two 
strategies: 
–  Create a new array of the same length as the old one and 

copy the elements from the old array to the new one. 
–  Use the clone method. 

•  Testing whether two array variables are equal (or 
not equal) is legal. However, this only checks 
whether the two variables refer to the same array. 

•  Checking whether two arrays contain identical 
elements requires writing a loop. 
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Resizing an Array 
•  Although arrays have fixed sizes, it’s possible to 

resize an array if it becomes full. The trick is to 
create an entirely new array to replace the old one. 

•  Resizing an array takes three steps: 
 1. Create a new array that’s larger than the old one. 
 2. Copy the elements of the old array into the new array. 
 3. Assign the new array to the old array variable. 
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Resizing an Array 
•  Code that doubles the size of the accounts 

array: 
 BankAccount[] tempArray = 
   new BankAccount[accounts.length*2]; 
 for (int i = 0; i < accounts.length; i++) 
   tempArray[i] = accounts[i]; 
 accounts = tempArray; 

•  Doubling the size of an array provides plenty of 
space for new elements, yet guarantees that there 
won’t be too much unused space. 
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Resizing an Array 
•  When an array is resized, the old array can be 

reclaimed by the garbage collector. 
•  Copying elements from the old array to the new 

usually doesn’t take that long. If the elements are 
objects, only references to the objects are copied, 
not the objects themselves. 

•  For additional speed, Java provides a method 
named System.arraycopy that can be used to 
copy elements from one array to another. 
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Resizing an Array 
•  A call of System.arraycopy that copies the 

elements of accounts into tempArray, 
starting from position 0 in both arrays: 

 System.arraycopy(accounts, 0, 
tempArray, 

                  0, accounts.length); 

 The last argument is the number of elements to be 
copied. 

•  Instances of Java’s Vector class behave like 
arrays that automatically grow when they become 
full. 
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Exercise: Write a Program 
•  In Test2-Studyguide, finish the NFLTeam3 and 
NFLGameDay3 programs    

•  Add an array to hold player names into class NFLTeam3  
•  Add a method addAplayer(String name) into class 
NFLTeam3  

•  Add at least 2 players to each team in NFLGameDay3  

•  Try 1:  add a method deleteAplayer(String 
name) into class NFLTeam3 and test it. 
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