
Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

1

Chapter 5

Arrays

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

2

One-Dimensional Arrays
•  In an array, all data items (known as elements)

must have the same type.
•  An array can be visualized as a series of boxes,

each capable of holding a single value belonging
to this type:

•  An array whose elements are arranged in a linear
fashion is said to be one-dimensional.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

3

Creating Arrays
•  An array declaration contains [], element can

be of any type, e.g., objects:
 int[] a; or int a[];

 String[] b; or String b[];

•  Declaring an array variable doesn’t allocate space
for the array’s elements. One way to allocate this
space is to use new keyword: a = new int[10];

•  Be careful not to access the elements of an array
before the array has been allocated. Doing so will
cause a NullPointerException to occur.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

4

Creating Arrays
•  Allocate space when the array is declared:
 int[] a = new int[10];

 int n = 10;
 int[] a = new int[n];

•  An array can be initialized at the time it’s declared:
 int[] a = {3, 0, 3, 4, 5};

–  The word new isn’t used if an initializer is present.

•  When an array is created using new, the elements of
the array are given default values:
–  Numbers are set to zero.
–  boolean elements are set to false.
–  Array and object elements are set to null.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

5

Visualizing Arrays
•  Each array element has an index, or subscript, that

specifies its position within the array.
–  only the numbers between 0 and n – 1 are valid indexes.
–  n=9

•  a[i] represents the ith element in array a.
•  An array subscript can be any expression, provided

that it evaluates to an int value.
 a[0], a[i], a[2*i-1]

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

6

Array Subscripting
•  Access a nonexistent array element causes an error

named ArrayIndexOutOfBoundsException.
•  An array element behaves just like a variable of the

element’s type:
 a[i] = 10;
 System.out.println(a[i]);

•  If the elements of an array are objects, they can call
instance methods.
–  if the array b contains String objects, the call
b[i].length() would return the length of the string
stored in b[i].

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

7

Processing the Elements in an Array
•  The number of elements in an array a is given by

the expression a.length.
•  A loop that adds up the elements in the array a,

leaving the result in the sum variable:
 int sum = 0;
 int i = 0;
 while (i < a.length) {
 sum += a[i];
 i++;
 }

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Exercise: Write a Program
•  The MaxScores program generates n=10 random scores

in 0 – 100, computes the average and finds the max score.
Output the average and max scores. of a series of scores
entered by the user:

•  Try 1: ask the users to type in n and the scores from the
keyboard

•  Try2: check the validity of user’s type and repeat until
legal input is obtained.

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

8

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

9

General Form of the for Statement
•  Form of the for statement:
 for (initialization ; test ; update)
 statement

•  Initialization is an initialization step that’s
performed once, before the loop begins to execute.

•  Test controls loop termination (the loop continues
executing as long as test is true).

•  Update is an operation to be performed at the end
of each loop iteration.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

10

for Statements Versus while Statements
 is equivalent to the following while loop:
 initialization ;
 while (test) {
 statement
 update ;
 }

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

11

for Statements Versus while Statements
•  A for statement:
 for (i = 10; i > 0; i--)
 System.out.println("T minus " + i +
 " and counting");

•  An equivalent while statement:
 i = 10;
 while (i > 0) {
 System.out.println("T minus " + i +
 " and counting");
 i--;
 }

•  uses --i instead of i--

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

12

for Statement Idioms
•  Typical ways to write a for statement

 Counting up from 0 to n – 1: for (i = 0; i < n; i++) …

 Counting up from 1 to n: for (i = 1; i <= n; i++) …

 Counting down from n – 1 to 0: for (i = n - 1; i >= 0; i--) …
 Counting down from n to 1: for (i = n; i >= 1; i--) …

•  initialization, test, and update parts need not be related.
•  The three parts that control a for loop are optional—any or

all can be omitted.
–  When both initialization and update are omitted, same as while loop

–  If the test part is missing, it defaults to true, so the for
statement doesn’t terminate, for (;;)

–  The break cause the loop to terminate.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

13

Declaring Control Variables
•  For convenience, the initialization part of a for

statement may declare a variable:
 for (int i = 0; i < n; i++)
 …

•  A variable declared in this way can’t be accessed
outside the loop. (The variable isn’t visible
outside the loop.)

•  It’s illegal for the enclosing method to declare a
variable with the same name. It is legal for two
for statements to declare the same variable,
however.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

14

Declaring Control Variables
•  Having a for statement declare its own control

variable is usually a good idea. It’s convenient,
and it can make programs easier to understand.

•  More than one variable can be declared in
initialization, provided that all variables have the
same type:

 for (int i = 0, j = 0; i < n; i++)
 …

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

15

Commas in for Statements
•  In a for statement, both initialization and update

are allowed to contain commas:
 for (i = 0, j = 0; i < n; i++, j += i)
 …

•  Any number of expressions are allowed within
initialization and update, provided that each can
stand alone as a statement.

•  When expressions are joined using commas, the
expressions are evaluated from left to right.

•  Using commas in a for statement is useful
primarily when a loop has two or more counters.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

16

Searching for a Particular Element
•  One common array operation is searching an array

to see if it contains a particular value:
 int i;
 for (i = 0; i < scores.length; i++)
 if (scores[i] == 100)
 break;

•  An if statement can be used to determine whether
or not the desired value was found:

 if (i < scores.length)
 System.out.println("Found 100 at position " + i);
 else
 System.out.println("Did not find 100");

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

17

Processing Array Counting Occurrences
•  Counting number occurrences
 int count = 0;
 for (int i = 0; i < scores.length; i++)
 if (scores[i] == 100)
 count++;

•  Finding the largest (or smallest element)
 int smallest = scores[0];
 for (int i = 1; i < scores.length; i++)
 if (scores[i] < smallest)
 smallest = scores[i];

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Exercise: Write a Program
•  The RepeatedDigits program will determine which

digits in a number appear more than once
•  The program will examine number’s digits one at a time,

incrementing one of the elements of digitCounts each
time, using the statement

 digitCounts[number%10]++;

•  If number is originally 392522459, the digitCounts
array will have the following appearance:

•  Try 1: use Scanner
•  Try2: how to count repeated number in a string

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

18

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

19

RepeatedDigits.java

// Checks a number for repeated digits

import jpb.*;

public class RepeatedDigits {
 public static void main(String[] args) {
 // Prompt user to enter a number and convert to int

form
 SimpleIO.prompt("Enter a number: ");
 String userInput = SimpleIO.readLine().trim();
 int number = Integer.parseInt(userInput);

 // Create an array to store digit counts
 int[] digitCounts = new int[10];

 // Remove digits from the number, one by one, and
 // increment the corresponding array element
 while (number > 0) {
 digitCounts[number%10]++;
 number /= 10;
 }

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

20

 // Create a string containing all repeated digits
 String repeatedDigits = "";
 for (int i = 0; i < digitCounts.length; i++)
 if (digitCounts[i] > 1)
 repeatedDigits += i + " ";

 // Display repeated digits. If no digits are repeated,
 // display "No repeated digits".
 if (repeatedDigits.length() > 0)
 System.out.println("Repeated digits: " +
 repeatedDigits);
 else
 System.out.println("No repeated digits");
 }
}

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

21

Using Arrays as Vectors
•  A for statement scaling: αA = [αa1 αa2 … αan]
 double[] a = new double[n];
 for (int i = 0; i < a.length; i++)
 a[i] *= alpha;

•  The inner product, or dot product, of A and B is
defined as follows:
 A ⋅ B = a1b1 + a2b2 + … + anbn

•  A loop that calculates the inner product
 double innerProduct = 0.0;
 for (int i = 0; i < a.length; i++)
 innerProduct += a[i] * b[i];

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

22

Parallel Arrays
•  The first technique for storing a database is to use

parallel arrays, one for each field.
•  For example, the records in a phone directory

would be stored in three arrays:

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

23

Parallel Arrays
 int[] xCoordinates = new int[100];
 int[] yCoordinates = new int[100];

•  The values of xCoordinates[i] and
yCoordinates[i] represent a single point.

•  Parallel arrays can be useful. However, they suffer
from two problems:
–  It’s better to deal with one data structure rather than

several.
–  Maintenance is more difficult. Changing the length of

one parallel array requires changing the lengths of the
others as well.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

24

Arrays of Objects
•  The alternative to parallel arrays is to treat each

record as an object, then store those objects in an
array.

•  A PhoneRecord object could store a name,
address, and phone number.

•  A Point object could contain instance variables
named x and y. (The Java API has such a class.)

•  An array of Point objects:
 Point[] points = new Point[100];

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

25

Creating a Database
•  Consider the problem of keeping track of the

accounts in a bank, where each account has an
account number (a String object) and a balance
(a double value).

•  One way to store the database would be to use two
parallel arrays:

 String[] accountNumbers = new String[100];
 double[] accountBalances = new double[100];

•  A third variable would keep track of how many
accounts are currently stored in the database:

 int numAccounts = 0;

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

26

Creating a Database
•  Statements that add a new account to the database:
 accountNumbers[numAccounts] = newAccountNumber;
 accountBalances[numAccounts] = newBalance;
 numAccounts++;

•  numAccounts serves two roles. It keeps track of
the number of accounts, but it also indicates the
next available “empty” position in the two arrays.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

27

Creating a Database
•  Another way to store the bank database would be

to use a single array whose elements are
BankAccount objects.

•  The BankAccount class will have two instance
variables (the account number and the balance).

•  BankAccount constructors and methods:
 public BankAccount(String accountNumber,
 double initialBalance)
 public void deposit(double amount)
 public void withdraw(double amount)
 public String getNumber()
 public double getBalance()

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

28

Creating a Database
•  BankAccount objects will be stored in the
accounts array:

 BankAccount[] accounts = new BankAccount[100];

•  numAccounts will track the number of accounts
currently stored in the array.

•  Fundamental operations on a database:
–  Adding a new record
–  Deleting a record
–  Locating a record
–  Modifying a record

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

29

Adding a Record to a Database
•  Adding a record to a database is done by creating

a new object and storing it in the array at the next
available position:

 accounts[numAccounts] =
 new BankAccount(number, balance);
 numAccounts++;

•  The two statements can be combined:
 accounts[numAccounts++] =
 new BankAccount(number, balance);

•  In some cases, the records in a database will need
to be stored in a particular order.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

30

Removing a Record from a Database
•  When a record is removed from a database, it

leaves a “hole”—an element that doesn’t contain
a record.

•  The hole can be filled by moving the last record
there and decrementing numAccounts:

 accounts[i] = accounts[numAccounts-1];
 numAccounts--;

•  These statements can be combined:
 accounts[i] = accounts[--numAccounts];

•  This technique works even when the database
contains only one record.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

31

Searching a Database
•  Searching a database usually involves looking for

a record that matches a certain “key” value.
•  Statements that search the accounts array for a

record containing a particular account number:
 int i;
 for (i = 0; i < numAccounts; i++)
 if (accounts[i].getNumber().equals(number))
 break;

•  Once the loop has terminated, the next step is to
test whether i is less than numAccounts. If so,
the value of i indicates the position of the record.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

32

Modifying a Record in a Database
•  A record can be updated by calling a method that

changes the object’s state.
•  A statement that deposits money into the account

located at position i in the accounts array:
 accounts[i].deposit(amount);

•  It’s sometimes more convenient to assign an array
element to a variable, and then use the variable
when performing the update:

 BankAccount currentAccount = accounts[i];
 currentAccount.deposit(amount);

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

33

 Arrays as Objects
•  Like objects, arrays are created using the new

keyword.
•  Arrays really are objects, and array variables have

the same properties as object variables.
•  An object variable doesn’t actually store an

object. Instead, it stores a reference to an object.
Array variables work the same way.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

34

Properties of Object Variables
•  Object variables have the following properties:

–  When an object variable is declared, it’s not necessary
for the variable to refer to an object immediately.

–  The value of an object variable can be changed as often
as desired.

–  Several object variables can refer to the same object.
–  When no variable refers to an object, it becomes

eligible for garbage collection.
–  Assigning one object variable to another causes only a

reference to be copied; no new object is created.
–  Testing whether two object variables are equal or not

equal compares the references stored in the variables.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

35

How Arrays are Stored
•  An array variable contains a reference to where

the array’s elements are stored.
•  Storage for an array named a containing 10

integers:

•  Arrays are “garbage collected” in the same way as
other objects. When there are no more references
to an array, the space occupied by the array can be
reclaimed automatically.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

36

Copying Arrays
•  If a and b are array variables of the same type, it's

legal to write
 b = a;

•  The effect is that b now contains a reference to the
same array as a:

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

37

Copying Arrays
•  The assignment operator doesn’t make a true copy

of an array. To make a genuine copy, there are two
strategies:
–  Create a new array of the same length as the old one and

copy the elements from the old array to the new one.
–  Use the clone method.

•  Testing whether two array variables are equal (or
not equal) is legal. However, this only checks
whether the two variables refer to the same array.

•  Checking whether two arrays contain identical
elements requires writing a loop.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

38

Resizing an Array
•  Although arrays have fixed sizes, it’s possible to

resize an array if it becomes full. The trick is to
create an entirely new array to replace the old one.

•  Resizing an array takes three steps:
 1. Create a new array that’s larger than the old one.
 2. Copy the elements of the old array into the new array.
 3. Assign the new array to the old array variable.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

39

Resizing an Array
•  Code that doubles the size of the accounts

array:
 BankAccount[] tempArray =
 new BankAccount[accounts.length*2];
 for (int i = 0; i < accounts.length; i++)
 tempArray[i] = accounts[i];
 accounts = tempArray;

•  Doubling the size of an array provides plenty of
space for new elements, yet guarantees that there
won’t be too much unused space.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

40

Resizing an Array
•  When an array is resized, the old array can be

reclaimed by the garbage collector.
•  Copying elements from the old array to the new

usually doesn’t take that long. If the elements are
objects, only references to the objects are copied,
not the objects themselves.

•  For additional speed, Java provides a method
named System.arraycopy that can be used to
copy elements from one array to another.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

41

Resizing an Array
•  A call of System.arraycopy that copies the

elements of accounts into tempArray,
starting from position 0 in both arrays:

 System.arraycopy(accounts, 0,
tempArray,

 0, accounts.length);

 The last argument is the number of elements to be
copied.

•  Instances of Java’s Vector class behave like
arrays that automatically grow when they become
full.

Chapter 5: Arrays

Java Programming
FROM THE BEGINNING

Exercise: Write a Program
•  In Test2-Studyguide, finish the NFLTeam3 and
NFLGameDay3 programs

•  Add an array to hold player names into class NFLTeam3
•  Add a method addAplayer(String name) into class
NFLTeam3

•  Add at least 2 players to each team in NFLGameDay3

•  Try 1: add a method deleteAplayer(String
name) into class NFLTeam3 and test it.

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

42

