
Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

1

Chapter 4

Basic Control Structures

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

2

Performing Comparisons
•  if statement can whether a boolean expression

has the value true or false.
•  Comparisons are performed using the relational

operators and the equality operators.
–  operands may have different types, an int will be

converted to double before the comparison
–  The arithmetic operators take precedence over the

relational operators
< > <= >= returning a boolean result

–  Equality operators have lower precedence than the
relational operators. == !=
2 == 2.0 ⇒ true

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

3

Testing Equality

•  Floating-Point Round-off error, 1.2 - 1.1 ==
0.1 is false, because the value of 1.2 - 1.1 is
0.09999999999999987, not 0.1.

•  Test equality of object x and y, of the same type
–  x == y tests whether x and y refer to the same object

(or both x and y have the value null).

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

4

equals Method in a Class
•  Every Java class supports the equals method,

although the definition of “equals” varies from
class to class.
–  For some classes, the value of x.equals(y) is the

same as x == y. e.g., String
–  Some classes have the equals method, to test whether

two objects contain a same data value.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

5

Comparing Strings
•  str1.equals(str2) to test whether str1

and str2 contain the same series of characters.
•  The equalsIgnoreCase method is similar to
equals but ignores the case of letters.

•  str1.compareTo(str2) returns an integer
that’s less than zero, equal to zero, or greater than
zero, depending on whether str1 is less than
str2, equal to str2, or greater than str2,
respectively.
–  For example, "aab" is less than "aba". "ab" is less

than "aba".

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

6

Comparing Strings
•  To determine whether one character is less than

another, the compareTo method examines the
Unicode values of the characters.

•  Properties of Unicode characters:
–  Digits are assigned consecutive values; 0 is less than 1,

which is less than 2, and so on.
–  Uppercase letters have consecutive values.
–  Lowercase letters have consecutive values.
–  Uppercase letters are less than lowercase letters.
–  The space character is less than any printing character,

including letters and digits.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

7

Logical Operators
•  logical operators combine the results of

comparisons. ! && ||
 age >= 18 && age <= 65

•  All logical operators expect boolean operands and
produce boolean results.

•  !(9 < 11) is false
•  ! operator is often used to test whether objects

(including strings) are not equal:
 !str1.equals(str2)

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

8

Performing the And Operation
•  The && operator tests whether two boolean

expressions are both true.
•  Behavior of the && operator:

 Evaluate the left operand. If it’s false, return false.
Otherwise, evaluate the right operand. If it’s true,
return true; if it’s false, return false.

•  The && operator ignores the right operand if the
left operand is false. This behavior is often called
short-circuit evaluation.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

9

Short-Circuit Evaluation
•  Short-circuit evaluation can save time.
•  More importantly, short-circuit evaluation can

avoid potential errors.
•  The following expression tests whether i is not 0

before checking whether j/i is greater than 0:
 (i != 0) && (j / i > 0)

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

10

Performing the Or Operation
•  The || (“or”) operator is used to test whether one

(or both) of two conditions is true.
•  Behavior of the || operator:

 Evaluate the left operand. If it’s true, return true.
Otherwise, evaluate the right operand. If it’s true,
return true; if it’s false, return false.

•  The || operator also relies on short-circuit
evaluation. If the left operand is true, it ignores the
right operand.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

11

Precedence and Associativity
of And, Or, and Not

•  ! operator takes precedence over &&, which in
turn takes precedence over ||.

•  The relational and equality operators take
precedence over && and ||, but have lower
precedence than !.

•  Java would interpret the expression
 a < b || c >= d && e == f

 as
 (a < b) || ((c >= d) && (e == f))

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

12

Precedence and Associativity
of And, Or, and Not

•  The ! operator is right associative.
•  The && and || operators are left associative.
•  Java would interpret
 a < b && c >= d && e == f

 as
 ((a < b) && (c >= d)) && (e == f)

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

13

Simplifying boolean Expressions
•  boolean expressions that contain the ! can be

simplified by de Morgan’s Laws:
 !(expr1 && expr2) is equivalent to !(expr1) || !(expr2)

 !(expr1 || expr2) is equivalent to !(expr1) && !(expr2)

 expr1 and expr2 are boolean expressions.

!(i >= 1 && i <= 10)

!(i >= 1) || !(i <= 10)

i < 1 || i > 10

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

14

if Statements
if (expression) // expression is boolean type.
 statement
 The expression is evaluated. true, then statement
is executed. false, statement is not executed.

 if (score > 100)
 score = 100;

•  = operator in an if statement’s condition:
 if (i = 0) … // WRONG
•  if statement has an “inner statement”—to be

executed if the condition is true. programmers
normally indent the inner statement

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

15

Increment and Decrement Operators
•  ++, increment operator, --, the decrement operator
 i++; i-- // a postfix operator
 ++i; --i // a prefix operator

•  Evaluating the expression i + j doesn’t change i or j.
Evaluating ++i causes a permanent change to i, however.

•  Used in isolation, no difference before or after the variable.
•  Used within other statements it usually does make a difference:
 System.out.println(++i);
 // Increments i and then prints the new

 // value of i
 System.out.println(i++);
 // Prints the old value of i and then
 // increments i

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Exercise: Write a Program
•  Test the following, what will be the output.

String s1="ab", s2="ab";
if(s1==s2) System.out.println("equal");
if(s1.equals(s2)) System.out.println("equal");

int n=0; double m=0;
if ((n==0) && (++m > 0))

 System.out.println("m =“ + m);
if ((n==0) && (m-- > 0))

 System.out.println("m =“ + m);

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

16

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

17

The Empty Statement
•  Putting a semicolon after the test condition in an
if statement is wrong:

 if (score > 100); // WRONG
 score = 100;

•  The compiler treats the extra semicolon as an
empty statement, however, so it doesn’t detect an
error:

 if (score > 100)
 ; // Empty statement--does nothing
 score = 100;

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

18

Blocks
•  An if statement can contain only one inner

statement.
•  In order to have an if statement perform more

than one action, a block can be used.
•  General form of a block:
 {
 statements
 }

•  A block is considered to be one statement, even
though it may contain any number of statements.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

19

Blocks
•  Example:
 if (score > 100)
 {
 System.out.println("** Error: Score exceeds 100 **");
 score = 100;
 }

•  Each of the statements inside the block ends with a
semicolon, but there’s no semicolon after the block
itself.

•  Curly brace {} can be at different location, increasing
the indentation for each new nesting level.
–  Aligning statements at the same level of nesting.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

20

if Statements with else Clauses
•  The if statement is allowed have an else

clause:
 if (expression)
 statement
 else
 statement

•  There are now two inner statements.
–  The first is executed if the expression is true.
–  The second is executed if the expression is false.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

21

if Statement Layout
•  An example of an if statement with an else

clause:
 if (a > b)
 larger = a;
 else
 larger = b;
Or
if (a > b) larger = a;
 else larger = b;

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

22

if Statement Layout
•  Recommended layout when the inner statements

are blocks:
 if (…) {
 …
 } else {
 …
 }

•  Other layouts are also common. For example:
 if (…) {
 …
 }
 else {
 …
 }

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

23

Nested if Statements
•  The statements nested inside an if statement can

be other if statements.
•  An if statement that converts an hour expressed

on a 24-hour scale (0–23) to a 12-hour scale:
 if (hour <= 11)
 if (hour == 0)
 System.out.println("12 midnight");
 else
 System.out.println(hour + " a.m.");
 else
 if (hour == 12)
 System.out.println("12 noon");
 else
 System.out.println((hour - 12) + " p.m.");

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

24

Nested if Statements
•  For clarity, it’s probably a good idea to put braces

around the inner if statements:
 if (hour <= 11) {
 if (hour == 0)
 System.out.println("12 midnight");
 else
 System.out.println(hour + " a.m.");
 } else {
 if (hour == 12)
 System.out.println("12 noon");
 else
 System.out.println((hour - 12) + " p.m.");
 }

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

25

Cascaded if Statements
•  Test a series of conditions, one after the other,

until finding one that’s true.
•  This situation is best handled by nesting a series of
if statements in such a way that the else clause
of each is another if statement.

•  This is called a cascaded if statement.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

26

Cascaded if Statements
•  A cascaded if statement that prints a letter grade:
 if (score >= 90)
 System.out.println("A");
 else
 if (score >= 80 && score <= 89)
 System.out.println("B");
 else
 if (score >= 70 && score <= 79)
 System.out.println("C");
 else
 if (score >= 60 && score <= 69)
 System.out.println("D");
 else
 System.out.println("F");

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

27

Cascaded if Statements
•  To avoid “indentation creep,” programmers

customarily put each else underneath the
original if:

 if (score >= 90)
 System.out.println("A");
 else if (score >= 80 && score <= 89)
 System.out.println("B");
 else if (score >= 70 && score <= 79)
 System.out.println("C");
 else if (score >= 60 && score <= 69)
 System.out.println("D");
 else
 System.out.println("F");

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

28

Cascaded if Statements
•  General form of a cascaded if statement:
 if (expression)
 statement
 else if (expression)
 statement
 …
 else if (expression)
 statement
 else
 statement

•  The else clause at the end may not be present.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

29

Simplifying Cascaded if Statements
•  A cascaded if statement can often be simplified

by removing conditions that are guaranteed
(because of previous tests) to be true.

•  The “letter grade” example has three such tests:

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Exercise: Write a Program
1.  Write a program called StudentGrade
•  Generate two random scores in the range of 0 and

100
–  Math.random method returns a “random” number

greater than or equal to 0.0 and less than 1.0.
•  Output a “letter grade ” for the score
A >=90
B 80 – 90
C 70 – 80
D 60 – 70
F <60

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

30

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

31

The “Dangling else” Problem
•  When one if statement contains another, the

“dangling else” problem can sometimes occur.
•  If n is in [0, max], add n to sum, if n > max,

add max to sum

 if (n <= max)
 if (n > 0)
 sum += n;
 else
 sum += max;

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

32

The “Dangling else” Problem
•  The problem is ambiguity. There are two ways to

read the if statement:
 Interpretation 1 Interpretation 2
 if (n <= max) { if (n <= max) {
 if (n > 0) if (n > 0)
 sum += n; sum += n;
 } else else
 sum += max; sum += max;
 }

•  When if statements are nested, Java matches
each else clause with the nearest unmatched if,
leading to Interpretation 2.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

33

The “Dangling else” Problem
•  To force Interpretation 1, the inner statement will

need to be made into a block by adding curly
braces:

 if (n <= max) {
 if (n > 0)
 sum += n;
 } else
 sum += max;

•  Always using braces in if statements will avoid
the dangling else problem.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

34

boolean Type
•  Variables and parameters can have boolean

type, and methods can return boolean values.
–  ideal for representing data items that have only two possible values.
–  Good names often contain a verb such as “is,” “was,” or “has.”
–  boolean jobWasDone = false;
–  if (jobWasDone) …
–  if (jobWasDone == true) …
–  System.out.println(jobWasDone);

 Either the word true or the word false will be
displayed.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

35

Types of Loops
•  Java has three loop statements:

–  while
–  do
–  for

•  All three use a boolean expression to determine
whether or not to continue looping.

•  All three require a single statement as the loop
body. This statement can be a block, however.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

36

Types of Loops
•  Which type of loop to use is mostly a matter of

convenience.
–  The while statement tests its condition before

executing the loop body.
–  The do statement tests its condition after executing the

loop body.
–  The for statement is most convenient if the loop is

controlled by a variable whose value needs to be
updated each time the loop body is executed.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

37

The while Statement
while (expression)
 statement

•  The expression is evaluated first. If true, loop
body is executed and the expression is tested again.

while (i < 20) // Controlling expression
 i *= 2; // Loop body

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

38

Blocks as Loop Bodies
•  The loop body can be a block within {}.
•  The greatest common divisor (GCD) of two

integers is the largest integer that divides both
numbers evenly, with no remainder. For example,
the GCD of 15 and 35 is 5.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

39

Blocks as Loop Bodies
•  Euclid’s algorithm for computing the GCD:

 1. Let m and n be variables containing the two numbers.
 2. If n is 0, then stop: m contains the GCD.
 3. Divide m by n. Save the divisor in m, and save the
remainder in n.
 4. Repeat the process, starting at step 2.

•  The algorithm will need a loop of the form
 while (n != 0) {

 …
 }

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

40

Blocks as Loop Bodies
•  A possible (but incorrect) body for the loop:
 m = n; // Save divisor in m
 n = m % n; // Save remainder in n

•  Writing the loop body correctly requires the use of
a temporary variable: a variable that stores a
value only briefly.

 while (n != 0) {
 r = m % n; // Store remainder in r
 m = n; // Save divisor in m
 n = r; // Save remainder in n
 }

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

41

Blocks as Loop Bodies
•  Be careful to use braces if the body of a loop

contains more than one statement.
•  Neglecting to do so may accidentally create an

infinite loop:
 while (n != 0) // WRONG; braces needed
 r = m % n;
 m = n;
 n = r;

•  An infinite loop occurs when a loop’s controlling
expression is always true, so the loop can never
terminate.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

42

Blocks as Loop Bodies
•  A table can be used to show how the variables

change during the execution of the GCD loop:
 Initial After After After After
 value iteration 1 iteration 2 iteration 3 iteration 4
 r ? 30 12 6 0
 m 30 72 30 12 6
 n 72 30 12 6 0

•  The GCD of 30 and 72 is 6, the final value of m.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

43

Declaring Variables in Blocks
•  A temporary variable can be declared inside a

block:
 while (n != 0) {
 int r = m % n; // Store remainder in r
 m = n; // Save divisor in m
 n = r; // Save remainder in n
 }

•  Any block may contain variable declarations, not
just a block used as a loop body.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

44

Declaring Variables in Blocks
•  Java prohibits a variable declared inside a block

from having the same name as a variable (or
parameter) declared in the enclosing method.

•  Declaring a variable inside a block isn’t always a
good idea.
–  can be used only within the block.
–  is created each time the block is entered and destroyed at

the end of the block, causing its value to be lost.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

45

Example: Improving
the Fraction Constructor

•  The original version of the Fraction class
provides the following constructor:

 public Fraction(int num, int denom) {
 numerator = num;
 denominator = denom;
 }

•  This constructor doesn’t reduce fractions to
lowest terms. Executing the statements

 Fraction f = new Fraction(4, 8);
 System.out.println(f);

 will produce 4/8 as the output instead of 1/2.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

46

Example: Improving
the Fraction Constructor

•  An improved version of the Fraction constructor:
 public Fraction(int num, int denom) {
 // Compute GCD of num and denom
 int m = num, n = denom;
 while (n != 0) {
 int r = m % n;
 m = n;
 n = r;
 }

 // Divide num and denom by GCD; store results in instance
 // variables
 if (m != 0) {
 numerator = num / m;
 denominator = denom / m;
 }

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

47

Example: Improving
the Fraction Constructor

 // Adjust fraction so that denominator is never negative
 if (denominator < 0) {
 numerator = -numerator;
 denominator = -denominator;
 }
 }

•  If the GCD of num and denom is 0, the constructor
doesn’t assign values to numerator and
denominator. Java automatically initializes these
variables to 0 anyway, so there is no problem.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

48

A “Countdown” Loop
•  The countdown loop will need a counter that's

updated:
 int i = 10;
 while (i > 0) {
 System.out.println(“i=" + i);
 i -= 1;
 }

•  i != 0 could be used instead of i > 0 as the
controlling expression. However, i > 0 is more
descriptive, since it suggests that i is decreasing.

•  Using short names for counters is a tradition.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

49

Increment and Decrement Operators
•  One way to increment or decrement a variable is

to use the + or - operator in conjunction with
assignment:

 i = i + 1; // Increment i
 i = i - 1; // Decrement i

•  Another way is to use the += and -= operators:
 i += 1; // Increment i
 i -= 1; // Decrement i

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

50

Increment and Decrement Operators
•  ++, increment operator, --, the decrement operator
 i++; i-- // a postfix operator
 ++i; --i // a prefix operator

•  Evaluating the expression i + j doesn’t change i or j.
Evaluating ++i causes a permanent change to i, however.

•  Used in isolation, no difference before or after the variable.
•  Used within other statements it usually does make a difference:
 System.out.println(++i);
 // Increments i and then prints the new

 // value of i
 System.out.println(i++);
 // Prints the old value of i and then
 // increments i

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

51

Increment and Decrement Operators
•  ++ and -- can be used in conjunction with other

operators:
 i = 1;
 j = ++i + 1;

 i is now 2 and j is now 3.
•  The outcome is different if the ++ operator is

placed after i:
 i = 1;
 j = i++ + 1;

 Both i and j are now 2.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

52

Using the Increment and
Decrement Operators in Loops

•  A modified version of the “squares” example:
 while (i <= n) {
 System.out.println(i + " " + i * i);
 i++;
 }

•  ++ and -- can sometimes be used to simplify
loops, including the countdown loop:

 while (i > 0) {
 System.out.println("T minus " + i-- +
 " and counting");
 }

 The braces are no longer necessary.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

53

Using the Increment and
Decrement Operators in Loops

•  The CourseAverage program of Section 2.11
would benefit greatly from counting loops.

•  In particular, a loop could be used to read the eight
program scores and compute their total:

 String userInput;
 double programTotal = 0.0;
 int i = 1;
 while (i <= 8) {
 SimpleIO.prompt("Enter Program " + i +

 " score: ");
 userInput = SimpleIO.readLine();
 programTotal += Convert.toDouble(userInput);
 i++;
 }

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

54

Uses of the break Statement
•  The break statement has several potential uses:

–  Premature exit from a loop
–  Exit from the middle of a loop
–  Multiple exit points within a loop

•  break statement is usually nested inside an if
statement, so that the enclosing loop will terminate
only when a certain condition has been satisfied

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

55

Premature Exit from a Loop
•  The problem of testing whether a number is prime

illustrates the need for premature exit from a loop.
•  The following loop divides n by the numbers from

2 to n – 1, breaking out when a divisor is found:
 int d = 2;
 while (d < n) {
 if (n % d == 0)
 break; // Terminate loop; n is not a prime
 d++;
 }
 if (d < n)
 System.out.println(n + " is divisible by " + d);
 else
 System.out.println(n + " is prime");

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

56

Loops with an Exit in the Middle
•  Loops in which the exit point is in the middle of the

body are fairly common.
•  A loop that reads user input, terminating when a

particular value is entered:
 while (true) {
 SimpleIO.prompt("Enter a number (enter 0 to stop): ");
 String userInput = SimpleIO.readLine();
 int n = Integer.parseInt(userInput);
 if (n == 0)
 break;
 System.out.println(n + " cubed is " + n * n * n);
 }

•  Using true as the controlling expression forces the
loop to repeat until the break statement is executed.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Exercise: Write a Program, StudentGrade2
•  Ask the user to input a score using Scanner class

and check the input score. If the input score is
negative, ask the user to re-input until a non-
negative score is typed in.

•  Output a “letter grade ” for the score
A >=90
B 80 – 90
C 70 – 80
D 60 – 70
F <60

 Copyright © 2000 W. W. Norton & Company.

All rights reserved.
57

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

58

4.9 Case Study: Decoding
Social Security Numbers

•  The first three digits of a Social Security Number
(SSN) form the “area number,” which indicates
the state or U.S. territory in which the number was
originally assigned.

•  The SSNInfo program will ask the user to enter
an SSN and then indicate where the number was
issued:

 Enter a Social Security number: 078-05-1120
 Number was issued in New York

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

59

Input Validation
•  SSNInfo will partially validate the user’s input:

–  The input must be 11 characters long (not counting any
spaces at the beginning or end).

–  The input must contain dashes in the proper places.

•  There will be no check that the other characters
are digits.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

60

Input Validation
•  If an input is invalid, the program will ask the user

to re-enter the input:
 Enter a Social Security number: 078051120
 Error: Number must have 11 characters

 Please re-enter number: 07805112000
 Error: Number must have the form ddd-dd-dddd

 Please re-enter number: 078-05-1120
 Number was issued in New York

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

61

Design of the SSNInfo Program
•  An overall design for the program:

 1. Prompt the user to enter an SSN and trim spaces from
the input.
 2. If the input isn’t 11 characters long, or lacks dashes in
the proper places, prompt the user to re-enter the SSN;
repeat until the input is valid.
 3. Compute the area number from the first three digits of
the SSN.
 4. Determine the location corresponding to the area number.
 5. Print the location, or print an error message if the area
number isn’t legal.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

62

Design of the SSNInfo Program
•  A pseudocode version of the loop in step 2:
 while (true) {
 if (user input is not 11 characters long) {
 print error message;
 else if (dashes are not in the right places) {
 print error message;
 else
 break;
 prompt user to re-enter input;
 read input;
 }

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

63

Design of the SSNInfo Program
•  The input will be a single string, which can be

trimmed by calling the trim method.
•  The first three digits of this string can be extracted

by calling substring and then converted to an
integer by calling Integer.parseInt.

•  This integer can then be tested by a cascaded if
statement to see which location it corresponds to.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

64

SSNInfo.java

// Program name: SSNInfo
// Author: K. N. King
// Written: 1999-06-18
//
// Prompts the user to enter a Social Security number and
// then displays the location (state or territory) where the
// number was issued. The input is checked for length (should
// be 11 characters) and for dashes in the proper places. If
// the input is not valid, the user is asked to re-enter the
// Social Security number.

import jpb.*;

public class SSNInfo {
 public static void main(String[] args) {
 // Prompt the user to enter an SSN and trim the input
 SimpleIO.prompt("Enter a Social Security number: ");
 String ssn = SimpleIO.readLine().trim();

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

65

 // If the input isn't 11 characters long, or lacks dashes
 // in the proper places, prompt the user to re-enter
 // the SSN; repeat until the input is valid.
 while (true) {
 if (ssn.length() != 11) {
 System.out.println("Error: Number must have 11 " +
 "characters");
 } else if (ssn.charAt(3) != '-' ||
 ssn.charAt(6) != '-') {
 System.out.println(
 "Error: Number must have the form ddd-dd-dddd");
 } else
 break;
 SimpleIO.prompt("\nPlease re-enter number: ");
 ssn = SimpleIO.readLine().trim();
 }

 // Get the area number (the first 3 digits of the SSN)
 int area = Integer.parseInt(ssn.substring(0, 3));

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

66

 // Determine the location corresponding to the area number
 String location;
 if (area == 0) location = null;
 else if (area <= 3) location = "New Hampshire";
 else if (area <= 7) location = "Maine";
 else if (area <= 9) location = "Vermont";
 else if (area <= 34) location = "Massachusetts";
 else if (area <= 39) location = "Rhode Island";
 else if (area <= 49) location = "Connecticut";
 else if (area <= 134) location = "New York";
 else if (area <= 158) location = "New Jersey";
 else if (area <= 211) location = "Pennsylvania";
 else if (area <= 220) location = "Maryland";
 else if (area <= 222) location = "Delaware";
 else if (area <= 231) location = "Virginia";
 else if (area <= 236) location = "West Virginia";
 else if (area <= 246) location = "North Carolina";
 else if (area <= 251) location = "South Carolina";
 else if (area <= 260) location = "Georgia";
 else if (area <= 267) location = "Florida";

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

67

 else if (area <= 302) location = "Ohio";
 else if (area <= 317) location = "Indiana";
 else if (area <= 361) location = "Illinois";
 else if (area <= 386) location = "Michigan";
 else if (area <= 399) location = "Wisconsin";
 else if (area <= 407) location = "Kentucky";
 else if (area <= 415) location = "Tennessee";
 else if (area <= 424) location = "Alabama";
 else if (area <= 428) location = "Mississippi";
 else if (area <= 432) location = "Arkansas";
 else if (area <= 439) location = "Louisiana";
 else if (area <= 448) location = "Oklahoma";
 else if (area <= 467) location = "Texas";
 else if (area <= 477) location = "Minnesota";
 else if (area <= 485) location = "Iowa";
 else if (area <= 500) location = "Missouri";
 else if (area <= 502) location = "North Dakota";
 else if (area <= 504) location = "South Dakota";
 else if (area <= 508) location = "Nebraska";
 else if (area <= 515) location = "Kansas";

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

68

 else if (area <= 517) location = "Montana";
 else if (area <= 519) location = "Idaho";
 else if (area <= 520) location = "Wyoming";
 else if (area <= 524) location = "Colorado";
 else if (area <= 525) location = "New Mexico";
 else if (area <= 527) location = "Arizona";
 else if (area <= 529) location = "Utah";
 else if (area <= 530) location = "Nevada";
 else if (area <= 539) location = "Washington";
 else if (area <= 544) location = "Oregon";
 else if (area <= 573) location = "California";
 else if (area <= 574) location = "Alaska";
 else if (area <= 576) location = "Hawaii";
 else if (area <= 579) location = "District of Columbia";
 else if (area <= 580) location = "Virgin Islands";
 else if (area <= 584) location = "Puerto Rico";
 else if (area <= 585) location = "New Mexico";
 else if (area <= 586) location = "Pacific Islands";
 else if (area <= 588) location = "Mississippi";
 else if (area <= 595) location = "Florida";

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

69

 else if (area <= 599) location = "Puerto Rico";
 else if (area <= 601) location = "Arizona";
 else if (area <= 626) location = "California";
 else if (area <= 645) location = "Texas";
 else if (area <= 647) location = "Utah";
 else if (area <= 649) location = "New Mexico";
 else if (area <= 653) location = "Colorado";
 else if (area <= 658) location = "South Carolina";
 else if (area <= 665) location = "Louisiana";
 else if (area <= 675) location = "Georgia";
 else if (area <= 679) location = "Arkansas";
 else if (area <= 680) location = "Nevada";
 else location = null;

 // Print the location, or print an error message if the
 // area number isn't legal
 if (location != null)
 System.out.println("Number was issued in " + location);
 else
 System.out.println("Number is invalid");
 }
}

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

70

4.10 Debugging
•  When a program contains control structures such

as the if and while statements, debugging
becomes more challenging.

•  It will be necessary to run the program more than
once, with different input data each time.

•  Each set of input data is called a test case.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

71

Statement Coverage
•  Make sure that each statement in the program is

executed by at least one test case. (This testing
technique is called statement coverage.)

•  Check that the controlling expression in each if
statement is true in some tests and false in others.

•  Try to test each while loop with data that forces
the controlling expression to be false initially, as
well as data that forces the controlling expression
to be true initially.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

72

Debugging Loops
•  Common types of loop bugs:

–  “Off-by-one” errors. Possible cause: Using the wrong
relational operator in the loop’s controlling expression
(such as i < n instead of i <= n).

–  Infinite loops. Possible causes: Failing to increment (or
decrement) a counter inside the body of the loop.
Accidentally creating an empty loop body by putting a
semicolon in the wrong place.

–  Never-executed loops. Possible causes: Inverting the
relational operator in the loop’s controlling expression
(i > n instead of i < n, for example). Using the ==
operator in a controlling expression.

Chapter 4: Basic Control Structures

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

73

Debugging Loops
•  A debugger is a great help in locating loop-related

bugs. By stepping through the statements in a loop
body, it’s easy to locate an off-by-one error, an
infinite loop, or a never-executed loop.

•  Another approach: Use System.out.println
to print the value of the counter variable (if the
loop has one), plus any other important variables
that change during the execution of the loop.

