Classes and Objects

* A program can be thought of as a model of reality,
with objects in the program representing physical
objects.

* Properties of objects:

— State (information stored within the object)

— Behavior (operations that can be performed on the
object)

* The state of a ball-point pen with a retractable
point can be represented by two values:
— Is the point of the pen exposed?

— How much ink remains in the pen?

* Operations on a pen include:
— Press the button at the end of the pen.

— Move the pen with the point held against a sheet of
paper.
— Replace the pen’ s cartridge.

— Determine how much ink remains in the pen.

* A state of a bank account includes the account
number, the balance, the transactions performed
on the account since it was opened, and so forth.

» For simplicity, let’ s assume that the state of a

bank account consists of just the balance 1n the
account.

* Operations on a bank account include:
— Deposit money into an account.
— Withdraw money from the account.
— Check the balance in the account.

— Close the account.

 The state of a car includes the amount of fluids in
the car, the state of the tires, and even the
condition of each part 1n the car.

* For programming purposes, we can focus on just a
few elements of the state:
— Is the engine on?
— How much fuel remains in the car’ s tank?

* Operations on a car include:

— Start the engine.
— Drive a specified distance.

5

* In Java, the state of an object 1s stored 1n instance
variables (or fields).

* The behavior of an object 1s represented by
instance methods.

Some instance variables will store a single value.
Others may store entire objects.

Instance variables needed for a ball-point pen:
— pointIsExposed (boolean)

— inkRemaining (double)

Instance variables needed for a bank account:
— balance (double)

Instance variables needed for a car:

— enginelIsOn (boolean)

— fuelRemaining (double)

7

* In Java, performing an operation on an object 1s
done by calling one of the instance methods

associated with the object.

* An instance method may require arguments when
it s called, and it may return a value.

* When asked to perform an operation on an object,
an 1nstance method can examine and/or change the
values stored in any of the object’ s instance
variables.

 Instance methods for ball-point pens:
- pressButton:“Toggles" polntIsExposed.
— write: Reduces value of inkRemaining.

— replaceCartridge: Restores inkRemaining to
1ts maximum value.

— checkInkRemaining: Returns value of
1nkRemaining.
» Instance methods for bank accounts:
— deposit: Adds an amount to balance.
— withdraw: Subtracts an amount from balance.
- getBalance: Returns value of balance.

— close: Stores zero into balance.
9

* Instance methods for cars:
— startEngine: Stores true into engineIsOn.
— stopEngine: Stores false into engineIsOn.

— drive: Reduces fuelRemaining by an amount
calculated by dividing the distance traveled by the
expected fuel consumption.

— addFuel: Increases fuelRemaining by a specified
amount.

10

 The instance variables and instance methods that
belong to a particular kind of object are grouped
together into a class.

« Examples of classes:
— BallpointPen
— Account

— Car

11

A class declaration contains declarations of
instance variables and instance methods.

Most class declarations also contain declarations
of constructors, whose job 1s to mitialize objects.

Form of a class declaration:

public class class-name {
variable-declarations
constructor-declarations
method-declarations

}
The order of declarations usually doesn’ t matter.

12

* The declaration of an instance variable, a
constructor, or an instance method usually begins
with an access modifier (public or private).

* An access modifier determines whether that entity
can be accessed by other classes (public) or
only within the class itself (private).

* The most common arrangement 1s for instance
variables to be private and constructors and
instance methods to be public.

13

 An instance variable declaration looks the same as
the declaration of a variable inside a method,
except that an access modifier 1s usually present:

private double balance;

* The only access to balance will be through the
instance methods in the Account class.

* The policy of making instance variables private 1s
known as information hiding.

14

 Parts of an instance method declaration:
— Access modifier

— Result type. If no value is returned, the result type is
void.

— Method name
— Parameters

— Body
* Qutline of the deposit method:

public void deposit (double amount) {

15

Java allows methods to be overloaded.
Overloading occurs when a class contains more
than one method with the same name.

The methods must have different numbers of
parameters or there must be some difference in the
types of the parameters.

Overloading 1s best used for methods that perform
essentially the same operation.

The advantage of overloading: Fewer method
names to remember.

16

When an object 1s created, its instance variables
are 1nitialized by a constructor.

A constructor looks like an instance method,
except that i1t has no result type and its name 1s the
same as the name of the class itself.

A constructor for the Account class:

public Account (double i1initialBalance) {

}
A class may have more than one constructor.

17

Example: An Account Class

Account. java

public class Account {
// Instance variables
private double balance;

// Constructors
public Account (double initialBalance) {
balance = initialBalance;

public Account () {
balance = 0.0;

Prog ramming 18 Copyright © 2000 W. W. Norton & Company.
FROM THE BEGINNING All rlghtS reserved.

// Instance methods
public void deposit (double amount) {
balance += amount;

public void withdraw (double amount) {
balance —-= amount;

public double getBalance () {
return balance;

public void close () {
balance = 0.0;

19

* Once a class has been declared, 1t can be used to
create objects (instances of the class).

* Each instance will contain its own copy of the
instance variables declared in the class.

* A newly created object can be stored 1n a variable
whose type matches the object’ s class:

Account acct;

Technically, acct will store a reference to an
Account object, not the object itself.

20

The keyword new, when placed before a class
name, causes an instance of the class to be created.

A newly created object can be stored in a variable:
acct = new Account (1000.00);

The acct variable can be declared in the same
statement that creates the Account object:

Account acct = new Account (1000.00);

An object can also be created using the second
constructor in the Account class:

acct = new Account () ;

21

* Once an object has been created, operations can be
performed on 1t by calling the instance methods in

the object’ s class.
« Form of an instance method call:

object . method-name (arguments)

The parentheses are mandatory, even 1if there are
no arguments.

22

* Suppose that acct contains an instance of the
Account class.

« Example calls of Account instance methods:
acct.depos1t (1000.00) ;
acct.withdraw (500.00) ;
acct.close();

* An object must be specified when an instance
method 1s called, because more than one instance
of the class could exist:

acctl.depos1t (1000.00);
acct2.depos1t (1000.00) ;

23

When an instance method returns no result, a call
of the method is an entire statement:

acct.deposit (1000.00);

When an instance method does return a result, that
result can be used in a variety of ways.

One possibility 1s to store 1t in a variable:
double newBalance = acct.getBalance()
Another possibility is to print it:

System.out.println (acct.getBalance()) ;

24

* Sequence of events when an instance method 1s
called:
— The program “jumps” to that method.

— The arguments in the call are copied into the method’ s
corresponding parameters.

— The method begins executing.

— When the method is finished, the program “returns” to
the point at which the method was called.

25

3.6 Writing Programs with Multiple Classes

e A program that tests the Account class:

TestAccount. java

public class TestAccount {

public static void main(String[] args) {
Account acctl = new Account (1000.00);
System.out.println("Balance in account 1: " +

acctl.getBalance());
acctl.deposit(100.00);

System.out.println("Balance in account 1: " +

acctl.getBalance());
acctl.withdraw (150.00);

System.out.println("Balance in account 1: " +
acctl.getBalance());

Programming 26

acctl.close();
System.out.println("Balance in account 1:
acctl.getBalance());

Account acct2 = new Account();
System.out.println ("Balance in account 2:
acctZ.getBalance());
acct2.deposit (500.00);
System.out.println("Balance in account 2:
acct2.getBalance())
acct2.withdraw (350.00) ;
System.out.println ("Balance in account 2:
acct2.getBalance());
acct2.close();
System.out.println ("Balance 1n account 2:
acct2.getBalance());

27

1)

w

w

w

1A

Output of the TestAccount program

Balance 1n account 1: 1000.0
Balance in account 1: 1100.0
Balance in account 1: 950.0
Balance 1n account 1: 0.0
Balance 1n account 2: 0.0
Balance 1n account 2: 500.0
Balance in account 2: 150.0
Balance 1in account 2: 0.0

Prog ramming 28 Copyright © 2000 W. W. Norton & Company.
FROM THE BEGINNING All rlghtS reserved.

 The TestAccount class, together with the
Account class, form a complete program.

 If the classes are stored in separate files, they
could be compiled using the following commands:
javac Account.java
javac TestAccount.java

* As an alternative, both files can be compiled with
a single command:

javac TestAccount.java

29

* When a file 1s compiled, the compiler checks
whether 1ts dependent classes are up-to-date.

« Ifthe . java file containing a dependent class has
been modified since the . class file was created,
javac will recompile the . java file
automatically.

 When TestAccount. java is compiled, the
javac compiler will look for Account. java
and compile 1t 1f necessary.

30

Executing a Program with Multiple Classes

e Command to execute the TestAccount
program:

Java TestAccount

The Account class 1s not mentioned.

Prog ramming 31 Copyright © 2000 W. W. Norton & Company.
FROM THE BEGINNING All rights reserved.

e The Account and TestAccount classes can
be put in the same file.

— The file will need to be named TestAccount. java,
because TestAccount contains the main method.

— The public access modifier will have to be removed
from the beginning of the Account class declaration.
(Only one class 1n a file can be declared public.)

 Compiling TestAccount. java causes
TestAccount.class and Account.class
to be generated.

32

» It s often better to put only one class in each file.
* Advantages:

— (Classes are easier to locate.
— Files are smaller and easier to edit.

— If a class declaration 1s changed, only the class itself
will have to be recompiled.

33

 Modify the Account.java and TestAccount.java
program.

— Add instance variable to denote accountID, which 1s 4
digits only and can be randomly generated.

* double x = Math.random();
— Test and printout user accountID and balance

Programming 34

* A variable of an ordinary (non-object) type can be
visualized as a box:

int 1; 1

» Assigning a value to the variable changes the
value stored 1n the box:

1 = 0; 1 0

35

 An object variable, on the other hand, doesn’ t
actually store an object. Instead, it will store a
reference to an object.

* An object variable can still be visualized as a box:

Account acct; acct

* Suppose that a new object 1s stored into acct:

acct = new Account (500.00);

36

e The Account object isn’ t stored in the acct
box. Instead, the box contains a reference that
“points to” the object:

Account object

acct - balance | 500.00 :

* In many programming languages, including C++,
a variable such as acct would be called a pointer
variable.

37

» To indicate that an object variable doesn’ t
currently point to an object, the variable can be
assigned the value null:

acct = null;

e When an object variable stores null, it s illegal
to use the variable to call an instance method.

* If acct has the value null, executing the
following statement will cause a run-time error
(NullPointerException):

acct.deposit (500.00);

38

* If i has the value 10, assigning i to j gives j the
value 10 as well:

1 10

] 10

* Changing the value of i has no effect on j:

1 20

1 = 20;

] 10

» Assignment of objects doesn’ t work the same
Way. -

 Assume that acct1 contains a reference to an
Account object with a balance of $500.

e Assigning acctl to acct2 causes acct2 to
refer to the same object as acctl:

acctl . Account object

. :
e |

acct?2 = acctl;

acct?2 —

e acctl and acct?2 are said to be aliases, because
both represent the same object.

40

* An operation that changes the acct1 object will
also change the acct?2 object, and vice-versa.

* The statement
acctl.depos1t (500.00);
will change the balance of acct2 to $1000.00:

acctl] Account object

LN T

- Bt

acct? —

41

* Some classes allow the creation of a new object
that’ s identical to an existing object.

* The new object 1s said to be a clone of the old one.

* Clones are created by calling the c1one method.

42

* Objects can become “orphaned” during program
execution.

* Consider the following example:

acctl = new Account (100.00);
acct?2 = new Account (200.00);
acctl = acct?2;

« After these assignments, the object that acctl
previously referred to is lost. We say that 1t 1s

garbage.

43

Chapter 3: Classes and Objects

Garbage

Account object

acctl \ balanceg 100.00

acct? - balanceg 200.00

Java Prog ramming 44 Copyright © 2000 W. W. Norton & Company.
FROM THE BEGINNING All rlghts reserved.

Java provides automatic garbage collection: as a
Java program runs, a software component known

as the garbage collector watches for garbage and
periodically “collects” it.

The recycled memory can be used for the creation
of new objects.

Garbage collection normally takes place when the
program isn’ t doing any other useful activity.

Java 1s the first widely used programming
language to incorporate garbage collection .

45

Other popular languages rely on the program to
explicitly release memory that s no longer
needed.

This practice is potentially more efficient, but it’ s
also error-prone.

Failing to recover garbage causes available
memory to decrease (a memory leak).

After a period of time, a program with a memory
leak may run out of memory entirely.

Releasing memory prematurely 1s even worse,
often causing programs,to crash.

* Test the following code and explain

acctl = new Account (100.00);
acct2 = new Account (200.00);
acctl = acct2;

acct2.deposit (500);

acct3 = new Account (200);

acct3.withdraw (300) ;

What are the balances of acctl,acct?2,
acct3? why?

Programming a7

» Fractions can be thought of as objects, so it’ s not
hard to develop a Fraction class.

* A Fraction object will need to store a
numerator and a denominator. Both are integers.

* There are many potential operations on fractions,
including adding, subtracting, multiplying, and
dividing.

48

* A first attempt at writing the Fraction class:

public class Fraction {
private i1nt numerator;
private int denominator;

public Fraction(int num, int denom) {
numerator = num;
denominator = denom;

}

// Methods will go here
}

A Fraction object will be created as follows:

Fraction £ = new Fraction (4, 8);

49

e The Fraction class will need methods named
getNumerator and getDenominator:

public int getNumerator () {
return numerator;

}

public int getDenominator () {
return denominator;

}

* An instance method that does nothing but return
the value of an instance variable 1s said to be an
accessor (or a getter).

50

By convention, names of getters start with the
word get.

Sample calls of getNumerator and

getDenominator:
int num = f.getNumerator():;
int denom = f.getDenominator();

An 1nstance method that stores 1ts parameter into
an 1nstance variable 1s said to be a mutator (or
setter).

Names of setters begin with the word set.

51

 Potential setters for the Fraction class:

public void setNumerator (int num) {
numerator = num;

}

public void setDenominator (int denom) {
denominator = denom;

}

« Sample calls of setNumerator and
setDenominator:

f.setNumerator (D) ;
f.setDenominator (0) ;

52

Setters can be useful, because they allow us to
change data stored in private variables.

In some cases, however, we may not want to allow
changes to an object’ s instance variables.

Such an object is said to be immutable
(unchangeable).

The advantage of making objects immutable 1s
that they can be shared without problems.

Some of the classes in the Java API have this
property, including the String class.

53

* A method that adds Fraction objects £1 and
£2 would need to be called in the following way:

Fraction £3 = fl.add(f2);
» add would have the following appearance:

public Fraction add(Fraction f) {

}

The parameter f represents the second of the two
fractions to be added.

54

* A first attempt at writing the add method:

public Fraction add(Fraction f) {

int num = numerator * f.getDenominator () +
f.getNumerator () * denominator;

int denom = denominator * f.getDenominator();

Fraction result = new Fraction (num, denom);

return result;

}

e numerator and denominator refer to the
numerator and denominator of the Fraction
object that” s calling add.

95

* The add method can be shortened slightly by
combining the constructor call with the return
statement:

public Fraction add(Fraction f) {

int num = numerator * f.getDenominator () +
f.getNumerator () * denominator;
int denom = denominator * f.getDenomilinator();

return new Fraction (num, denom);

56

* The add method can be further simplified by
having it access £ s numerator and
denominator variables directly:

public Fraction add(Fraction f) {
int num = numerator * f.denominator +
f.numerator * denominator;
int denom = denominator * f.denominator;
return new Fraction (num, denom);

}

 Instance variables are accessed using a dot, just as
instance methods are called using a dot.

o7

* The value stored in a Fraction object named £
could be printed in the following way:

System.out.println (f.getNumerator() + "/" +
f.getDenominator()) ;

* The following method makes 1t easier to print
fractions:

public String toString () {
return numerator + "/" 4+ denominator;

}
* In Java, the name toString is used for a

method that returns the contents of an object as a
string.

58

 The toString method makes it easier to display
the value stored in a Fraction object:

System.out.println (f.toString()):;
* The statement can be shortened even further:
System.out.println (f);

When given an object as its argument,
System.out.println will automatically call
the object’ s toString method.

59

* Add the subtract Method for class Fraction

e« Test the new Fraction and output results
5/6 — 2/6
5/6 - 1/3

Programming 60

The Java API provides a huge number of
prewritten classes. Of these, the String class is
probably the most important.

Instances of the St ring class represent strings of
characters.

The String class belongs to a package named
Java.lang.

The java.lang package i1s automatically
imported into every program. (No other package
has this property.)

61

* In Java, every string of characters, such as
"abc", 1s an instance of the St ring class.

 String variables can be assigned String
objects as their values:

String strl, str2;

 String is the only class whose instances can be
created without the word new:

strl = "abc";

This 1s an example of magic.

62

A String object can be visualized as a series of
characters, with each character identified by its
position.

* The first character 1s located at position O.

* A visual representation of the string " Java
rules!™:

ol 4
-
| <
w|l W
o B
@ G
~ |
| (D

63

 The String class has a large number of 1nstance
methods.

* Assume that the following variable declarations
are 1n effect:
String strl = "Fat cat", str2;
char ch;
int i1ndex;

* The charAt method returns the character stored
at a specific position 1n a string:
ch = strl.charAt(0); // Value of ch is now 'F'
ch = strl.charAt(6); // Value of ch is now 't'

64

* One version of the i ndexOf method searches for
a string (the “search key ") within a larger string,
starting at the beginning of the larger string.

» Example: Locating the string "at" within strl:
index = strl.indexOf ("at");
After this assignment, index will have the value 1.

« If "at" had not been found anywhere in stril,
indexOf would have returned —1.

65

* The other version of indexOf begins the search
at a specified position, rather than starting at
position 0.

* This version is particularly useful for repeating a

previous search to find another occurrence of the
search key.

» Example: Finding the second occurrence of "at"
in strl:

index = strl.indexOf ("at", 1ndex + 1);

index will be assigned the value 5.

66

 lastIndexOf 1s similar to indexOf, except
that searches proceed backwards, starting from the

end of the string.

» Example: Finding the last occurrence of "at" in
strl:
index = strl.lastIndexOf ("at");
The value of index after the assignment will be
5.

67

* The second version of 1astIndexOf begins the
search at a specified position.

» Example: Finding the next-to-last occurrence of
Tath:
index = strl.lastIndexOf ("at", index - 1);

The value of index after the assignment will be

 The String class has additional versions of
indexOf and lastIndexOf, whose first
argument 1s a single character rather than a string.

68

The 1ength method returns the number of
characters 1n a string.

For example, strl.length () returns the
length of str1, whichis 7.

The substring method returns a substring: a
series of consecutive characters within a string.

One version of substring selects a portion of a
string beginning at a specified position:
str2 = strl.substring(4);

After the assignment, st r2 will have the value
LA C at LA .

69

* The other version of substring accepts two
arguments:

— The position of the first character to include in the
substring

— The position of the first character after the end of the
substring

« Example:

str2 = strl.substring (0, 3);

After the assignment, st r2 will have the value
LA Fat LA .

70

« toLowerCase and toUpperCase will convert
the letters 1n a string to lowercase or uppercase.

» After the assignment

str?2 = strl.toLowerCase();
the value of str21s "fat cat".

» After the assignment
str2 = strl.toUpperCase();

the value of str2 1s "FAT CAT".

o Characters other than letters aren’ t changed by
toLowerCase and toUpperCase.

71

* The trim method removes spaces (and other
invisible characters) from both ends of a string.

» After the assignments

strl = " How now, brown cow? ";
str?2 = strl.trim();

the value of str2 will be

"How now, Dbrown cow?"

72

 When an instance method returns an object, that
object can be used to call another instance method.

* For example, the statements

str?2 = strl.trim();
str?2 = str2.toLowerCase () ;

can be combined 1nto a single statement:

str?2 = strl.trim() .toLowerCase () ;

73

* One of the most common string operations 1s
concatenation: joining two strings together to
form a single string.

 The String class provides a concat method
that performs concatenation, but it s rarely used.

 (Concatenation 1s so common that Java allows the
use of the plus sign (+) to concatenate strings:

str?2 = strl + "s";

str2 now contains the string "Fat cats".

74

* The + operator works even i1f one of the operands
isn’ ta String object. The non-String operand
is converted to string form automatically:

System.out.println("Celsius equivalent: " +
celsius);

75

 If the + operator 1s used to combine a string with
any other kind of object, the object’ s toString
method 1s called.

 The statement

System.out.println("Value of fraction: " + f);
has the same effect as
System.out.println ("Value of fraction: " +

f.toString());

76

* In order for the + operator to mean string
concatenation, at least one of its two operands
must be a string:

System.out.println ("Java" + 1 + 2);
// Prints "JavalZ2"

System.out.println(l + 2 + "Java");
// Prints "3Jdava"

77

The + operator is useful for breaking up long

strings 1nto smaller chunks:
System.out.println (
"Bothered by unsightly white space? " +

"Remove it quickly and\neasily with " +
"the new, 1mproved trim method!");

78

* The += operator can be used to add characters to
the end of a string:

String str = "The quick brown fox ";
str += "jumped over ";
str += "the lazy dog.";
The final value of str will be "The quick

brown fox jumped over the lazy dog."

* Concatenating a number with an empty string will
convert the number to string form. For example, 1f
i contains 37, then 1 + "" is the string "37".

79

* Modify the Account class

— Add username as an instance variable

— Add setUserName method
e acctl.setUserName(“Tom White™);

— Add getName method

— Test 1t and print out all the information of a bank account
in the following format

username (account]D) has balance in the bank

e.g.,
Tom Whiten (3420) has $100.00 in the bank

Programming 80

