
Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

1

Chapter 3

Classes and Objects

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

2

3.1 Objects as Models
•  A program can be thought of as a model of reality,

with objects in the program representing physical
objects.

•  Properties of objects:
–  State (information stored within the object)
–  Behavior (operations that can be performed on the

object)

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

3

Example 1: Ball-point Pen
•  The state of a ball-point pen with a retractable

point can be represented by two values:
–  Is the point of the pen exposed?
–  How much ink remains in the pen?

•  Operations on a pen include:
–  Press the button at the end of the pen.
–  Move the pen with the point held against a sheet of

paper.
–  Replace the pen’s cartridge.
–  Determine how much ink remains in the pen.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

4

Example 2: Bank Account
•  A state of a bank account includes the account

number, the balance, the transactions performed
on the account since it was opened, and so forth.

•  For simplicity, let’s assume that the state of a
bank account consists of just the balance in the
account.

•  Operations on a bank account include:
–  Deposit money into an account.
–  Withdraw money from the account.
–  Check the balance in the account.
–  Close the account.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

5

Example 3: Car
•  The state of a car includes the amount of fluids in

the car, the state of the tires, and even the
condition of each part in the car.

•  For programming purposes, we can focus on just a
few elements of the state:
–  Is the engine on?
–  How much fuel remains in the car’s tank?

•  Operations on a car include:
–  Start the engine.
–  Drive a specified distance.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

6

3.2 Representing Objects Within a Program
•  In Java, the state of an object is stored in instance

variables (or fields).
•  The behavior of an object is represented by

instance methods.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

7

Instance Variables
•  Some instance variables will store a single value.

Others may store entire objects.
•  Instance variables needed for a ball-point pen:

–  pointIsExposed (boolean)
–  inkRemaining (double)

•  Instance variables needed for a bank account:
–  balance (double)

•  Instance variables needed for a car:
–  engineIsOn (boolean)
–  fuelRemaining (double)

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

8

Instance Methods
•  In Java, performing an operation on an object is

done by calling one of the instance methods
associated with the object.

•  An instance method may require arguments when
it’s called, and it may return a value.

•  When asked to perform an operation on an object,
an instance method can examine and/or change the
values stored in any of the object’s instance
variables.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

9

Examples of Instance Methods
•  Instance methods for ball-point pens:

–  pressButton:“Toggles” pointIsExposed.
–  write: Reduces value of inkRemaining.
–  replaceCartridge: Restores inkRemaining to

its maximum value.
–  checkInkRemaining: Returns value of
inkRemaining.

•  Instance methods for bank accounts:
–  deposit: Adds an amount to balance.
–  withdraw: Subtracts an amount from balance.
–  getBalance: Returns value of balance.
–  close: Stores zero into balance.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

10

Examples of Instance Methods
•  Instance methods for cars:

–  startEngine: Stores true into engineIsOn.
–  stopEngine: Stores false into engineIsOn.
–  drive: Reduces fuelRemaining by an amount

calculated by dividing the distance traveled by the
expected fuel consumption.

–  addFuel: Increases fuelRemaining by a specified
amount.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

11

3.3 Classes
•  The instance variables and instance methods that

belong to a particular kind of object are grouped
together into a class.

•  Examples of classes:
–  BallpointPen
–  Account
–  Car

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

12

Declaring a Class
•  A class declaration contains declarations of

instance variables and instance methods.
•  Most class declarations also contain declarations

of constructors, whose job is to initialize objects.
•  Form of a class declaration:
 public class class-name {
 variable-declarations
 constructor-declarations
 method-declarations
 }

•  The order of declarations usually doesn’t matter.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

13

Access Modifiers
•  The declaration of an instance variable, a

constructor, or an instance method usually begins
with an access modifier (public or private).

•  An access modifier determines whether that entity
can be accessed by other classes (public) or
only within the class itself (private).

•  The most common arrangement is for instance
variables to be private and constructors and
instance methods to be public.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

14

Declaring Instance Variables
•  An instance variable declaration looks the same as

the declaration of a variable inside a method,
except that an access modifier is usually present:

 private double balance;

•  The only access to balance will be through the
instance methods in the Account class.

•  The policy of making instance variables private is
known as information hiding.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

15

Declaring Instance Methods
•  Parts of an instance method declaration:

–  Access modifier
–  Result type. If no value is returned, the result type is
void.

–  Method name
–  Parameters
–  Body

•  Outline of the deposit method:
 public void deposit(double amount) {
 …
 }

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

16

Method Overloading
•  Java allows methods to be overloaded.

Overloading occurs when a class contains more
than one method with the same name.

•  The methods must have different numbers of
parameters or there must be some difference in the
types of the parameters.

•  Overloading is best used for methods that perform
essentially the same operation.

•  The advantage of overloading: Fewer method
names to remember.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

17

Declaring Constructors
•  When an object is created, its instance variables

are initialized by a constructor.
•  A constructor looks like an instance method,

except that it has no result type and its name is the
same as the name of the class itself.

•  A constructor for the Account class:
 public Account(double initialBalance) {
 …

 }

•  A class may have more than one constructor.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

18

Example: An Account Class
Account.java

public class Account {
 // Instance variables
 private double balance;

 // Constructors
 public Account(double initialBalance) {
 balance = initialBalance;
 }

 public Account() {
 balance = 0.0;
 }

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

19

 // Instance methods
 public void deposit(double amount) {
 balance += amount;
 }

 public void withdraw(double amount) {
 balance -= amount;
 }

 public double getBalance() {
 return balance;
 }

 public void close() {
 balance = 0.0;
 }
}

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

20

3.4 Creating Objects
•  Once a class has been declared, it can be used to

create objects (instances of the class).
•  Each instance will contain its own copy of the

instance variables declared in the class.
•  A newly created object can be stored in a variable

whose type matches the object’s class:
 Account acct;

 Technically, acct will store a reference to an
Account object, not the object itself.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

21

The new Keyword
•  The keyword new, when placed before a class

name, causes an instance of the class to be created.
•  A newly created object can be stored in a variable:
 acct = new Account(1000.00);

•  The acct variable can be declared in the same
statement that creates the Account object:

 Account acct = new Account(1000.00);

•  An object can also be created using the second
constructor in the Account class:

 acct = new Account();

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

22

3.5 Calling Instance Methods
•  Once an object has been created, operations can be

performed on it by calling the instance methods in
the object’s class.

•  Form of an instance method call:
 object . method-name (arguments)
 The parentheses are mandatory, even if there are
no arguments.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

23

Calling Account Instance Methods
•  Suppose that acct contains an instance of the
Account class.

•  Example calls of Account instance methods:
 acct.deposit(1000.00);
 acct.withdraw(500.00);
 acct.close();

•  An object must be specified when an instance
method is called, because more than one instance
of the class could exist:

 acct1.deposit(1000.00);
 acct2.deposit(1000.00);

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

24

Using the Value Returned
by an Instance Method

•  When an instance method returns no result, a call
of the method is an entire statement:

 acct.deposit(1000.00);

•  When an instance method does return a result, that
result can be used in a variety of ways.

•  One possibility is to store it in a variable:
 double newBalance = acct.getBalance();

•  Another possibility is to print it:
 System.out.println(acct.getBalance());

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

25

How Instance Methods Work
•  Sequence of events when an instance method is

called:
–  The program “jumps” to that method.
–  The arguments in the call are copied into the method’s

corresponding parameters.
–  The method begins executing.
–  When the method is finished, the program “returns” to

the point at which the method was called.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

26

3.6 Writing Programs with Multiple Classes
•  A program that tests the Account class:

TestAccount.java

public class TestAccount {
 public static void main(String[] args) {
 Account acct1 = new Account(1000.00);
 System.out.println("Balance in account 1: " +
 acct1.getBalance());
 acct1.deposit(100.00);
 System.out.println("Balance in account 1: " +
 acct1.getBalance());
 acct1.withdraw(150.00);
 System.out.println("Balance in account 1: " +
 acct1.getBalance());

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

27

 acct1.close();
 System.out.println("Balance in account 1: " +
 acct1.getBalance());

 Account acct2 = new Account();
 System.out.println("Balance in account 2: " +
 acct2.getBalance());
 acct2.deposit(500.00);
 System.out.println("Balance in account 2: " +
 acct2.getBalance());
 acct2.withdraw(350.00);
 System.out.println("Balance in account 2: " +
 acct2.getBalance());
 acct2.close();
 System.out.println("Balance in account 2: " +
 acct2.getBalance());
 }
}

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

28

Output of the TestAccount program
 Balance in account 1: 1000.0
 Balance in account 1: 1100.0

 Balance in account 1: 950.0
 Balance in account 1: 0.0

 Balance in account 2: 0.0

 Balance in account 2: 500.0
 Balance in account 2: 150.0

 Balance in account 2: 0.0

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

29

Compiling a Program with Multiple Classes
•  The TestAccount class, together with the
Account class, form a complete program.

•  If the classes are stored in separate files, they
could be compiled using the following commands:

 javac Account.java
 javac TestAccount.java

•  As an alternative, both files can be compiled with
a single command:

 javac TestAccount.java

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

30

Compiling a Program with Multiple Classes
•  When a file is compiled, the compiler checks

whether its dependent classes are up-to-date.
•  If the .java file containing a dependent class has

been modified since the .class file was created,
javac will recompile the .java file
automatically.

•  When TestAccount.java is compiled, the
javac compiler will look for Account.java
and compile it if necessary.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

31

Executing a Program with Multiple Classes
•  Command to execute the TestAccount

program:
 java TestAccount
 The Account class is not mentioned.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

32

Using a Single File
•  The Account and TestAccount classes can

be put in the same file.
–  The file will need to be named TestAccount.java,

because TestAccount contains the main method.
–  The public access modifier will have to be removed

from the beginning of the Account class declaration.
(Only one class in a file can be declared public.)

•  Compiling TestAccount.java causes
TestAccount.class and Account.class
to be generated.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

33

Using a Single File
•  It’s often better to put only one class in each file.
•  Advantages:

–  Classes are easier to locate.
–  Files are smaller and easier to edit.
–  If a class declaration is changed, only the class itself

will have to be recompiled.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Exercise: Write a Program: Account
•  Modify the Account.java and TestAccount.java

program.
–  Add instance variable to denote accountID, which is 4

digits only and can be randomly generated.
•  double x = Math.random();

–  Test and printout user accountID and balance

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

34

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

35

3.7 How Objects Are Stored
•  A variable of an ordinary (non-object) type can be

visualized as a box:

 int i;

•  Assigning a value to the variable changes the
value stored in the box:

 i = 0;

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

36

Object Variables
•  An object variable, on the other hand, doesn’t

actually store an object. Instead, it will store a
reference to an object.

•  An object variable can still be visualized as a box:

 Account acct;

•  Suppose that a new object is stored into acct:
 acct = new Account(500.00);

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

37

Object Variables
•  The Account object isn’t stored in the acct

box. Instead, the box contains a reference that
“points to” the object:

•  In many programming languages, including C++,
a variable such as acct would be called a pointer
variable.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

38

The null Keyword
•  To indicate that an object variable doesn’t

currently point to an object, the variable can be
assigned the value null:

 acct = null;

•  When an object variable stores null, it’s illegal
to use the variable to call an instance method.

•  If acct has the value null, executing the
following statement will cause a run-time error
(NullPointerException):

 acct.deposit(500.00);

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

39

Object Assignment
•  If i has the value 10, assigning i to j gives j the

value 10 as well:

 j = i;

•  Changing the value of i has no effect on j:

 i = 20;

•  Assignment of objects doesn’t work the same
way.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

40

Object Assignment
•  Assume that acct1 contains a reference to an
Account object with a balance of $500.

•  Assigning acct1 to acct2 causes acct2 to
refer to the same object as acct1:

 acct2 = acct1;

•  acct1 and acct2 are said to be aliases, because
both represent the same object.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

41

Object Assignment
•  An operation that changes the acct1 object will

also change the acct2 object, and vice-versa.
•  The statement
 acct1.deposit(500.00);

 will change the balance of acct2 to $1000.00:

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

42

Cloning
•  Some classes allow the creation of a new object

that’s identical to an existing object.
•  The new object is said to be a clone of the old one.
•  Clones are created by calling the clone method.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

43

Garbage
•  Objects can become “orphaned” during program

execution.
•  Consider the following example:
 acct1 = new Account(100.00);

 acct2 = new Account(200.00);
 acct1 = acct2;

•  After these assignments, the object that acct1
previously referred to is lost. We say that it is
garbage.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

44

Garbage

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

45

Garbage Collection
•  Java provides automatic garbage collection: as a

Java program runs, a software component known
as the garbage collector watches for garbage and
periodically “collects” it.

•  The recycled memory can be used for the creation
of new objects.

•  Garbage collection normally takes place when the
program isn’t doing any other useful activity.

•  Java is the first widely used programming
language to incorporate garbage collection .

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

46

Memory Leaks
•  Other popular languages rely on the program to

explicitly release memory that’s no longer
needed.

•  This practice is potentially more efficient, but it’s
also error-prone.

•  Failing to recover garbage causes available
memory to decrease (a memory leak).

•  After a period of time, a program with a memory
leak may run out of memory entirely.

•  Releasing memory prematurely is even worse,
often causing programs to crash.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Exercise: Write a Program
•  Test the following code and explain
 acct1 = new Account(100.00);

 acct2 = new Account(200.00);
 acct1 = acct2;

 acct2.deposit (500);
 acct3 = new Account (200);

 acct3.withdraw(300);

What are the balances of acct1,acct2,
acct3? why?

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

47

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

48

3.8 Developing a Fraction Class
•  Fractions can be thought of as objects, so it’s not

hard to develop a Fraction class.
•  A Fraction object will need to store a

numerator and a denominator. Both are integers.
•  There are many potential operations on fractions,

including adding, subtracting, multiplying, and
dividing.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

49

A First Attempt
•  A first attempt at writing the Fraction class:
 public class Fraction {
 private int numerator;
 private int denominator;

 public Fraction(int num, int denom) {
 numerator = num;
 denominator = denom;
 }

 // Methods will go here
 }

•  A Fraction object will be created as follows:
 Fraction f = new Fraction(4, 8);

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

50

Getters and Setters
•  The Fraction class will need methods named
getNumerator and getDenominator:

 public int getNumerator() {
 return numerator;
 }

 public int getDenominator() {
 return denominator;
 }

•  An instance method that does nothing but return
the value of an instance variable is said to be an
accessor (or a getter).

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

51

Getters and Setters
•  By convention, names of getters start with the

word get.
•  Sample calls of getNumerator and
getDenominator:

 int num = f.getNumerator();
 int denom = f.getDenominator();

•  An instance method that stores its parameter into
an instance variable is said to be a mutator (or
setter).

•  Names of setters begin with the word set.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

52

Getters and Setters
•  Potential setters for the Fraction class:
 public void setNumerator(int num) {
 numerator = num;
 }

 public void setDenominator(int denom) {
 denominator = denom;
 }

•  Sample calls of setNumerator and
setDenominator :

 f.setNumerator(5);
 f.setDenominator(6);

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

53

Immutable Objects
•  Setters can be useful, because they allow us to

change data stored in private variables.
•  In some cases, however, we may not want to allow

changes to an object’s instance variables.
•  Such an object is said to be immutable

(unchangeable).
•  The advantage of making objects immutable is

that they can be shared without problems.
•  Some of the classes in the Java API have this

property, including the String class.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

54

Writing the add Method
•  A method that adds Fraction objects f1 and
f2 would need to be called in the following way:

 Fraction f3 = f1.add(f2);

•  add would have the following appearance:
 public Fraction add(Fraction f) {

 …
 }

 The parameter f represents the second of the two
fractions to be added.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

55

Writing the add Method
•  A first attempt at writing the add method:
 public Fraction add(Fraction f) {

 int num = numerator * f.getDenominator() +

 f.getNumerator() * denominator;
 int denom = denominator * f.getDenominator();

 Fraction result = new Fraction(num, denom);

 return result;

 }

•  numerator and denominator refer to the
numerator and denominator of the Fraction
object that’s calling add.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

56

Writing the add Method
•  The add method can be shortened slightly by

combining the constructor call with the return
statement:

 public Fraction add(Fraction f) {

 int num = numerator * f.getDenominator() +

 f.getNumerator() * denominator;

 int denom = denominator * f.getDenominator();
 return new Fraction(num, denom);

 }

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

57

Writing the add Method
•  The add method can be further simplified by

having it access f’s numerator and
denominator variables directly:

 public Fraction add(Fraction f) {
 int num = numerator * f.denominator +
 f.numerator * denominator;
 int denom = denominator * f.denominator;
 return new Fraction(num, denom);
 }

•  Instance variables are accessed using a dot, just as
instance methods are called using a dot.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

58

Adding a toString Method
•  The value stored in a Fraction object named f

could be printed in the following way:
 System.out.println(f.getNumerator() + "/" +
 f.getDenominator());

•  The following method makes it easier to print
fractions:

 public String toString() {
 return numerator + "/" + denominator;
 }

•  In Java, the name toString is used for a
method that returns the contents of an object as a
string.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

59

Adding a toString Method
•  The toString method makes it easier to display

the value stored in a Fraction object:
 System.out.println(f.toString());

•  The statement can be shortened even further:
 System.out.println(f);

 When given an object as its argument,
System.out.println will automatically call
the object’s toString method.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Exercise: Write a Program
•  Add the subtract Method for class Fraction
•  Test the new Fraction and output results
 5/6 – 2/6
 5/6 – 1/3

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

60

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

61

3.9 Java’s String Class
•  The Java API provides a huge number of

prewritten classes. Of these, the String class is
probably the most important.

•  Instances of the String class represent strings of
characters.

•  The String class belongs to a package named
java.lang.

•  The java.lang package is automatically
imported into every program. (No other package
has this property.)

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

62

Creating Strings
•  In Java, every string of characters, such as
"abc", is an instance of the String class.

•  String variables can be assigned String
objects as their values:

 String str1, str2;

•  String is the only class whose instances can be
created without the word new:

 str1 = "abc";

 This is an example of magic.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

63

Visualizing a String
•  A String object can be visualized as a series of

characters, with each character identified by its
position.

•  The first character is located at position 0.
•  A visual representation of the string "Java
rules!":

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

64

Common String Methods
•  The String class has a large number of instance

methods.
•  Assume that the following variable declarations

are in effect:
 String str1 = "Fat cat", str2;
 char ch;

 int index;

•  The charAt method returns the character stored
at a specific position in a string:

 ch = str1.charAt(0); // Value of ch is now 'F'

 ch = str1.charAt(6); // Value of ch is now 't'

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

65

Common String Methods
•  One version of the indexOf method searches for

a string (the “search key”) within a larger string,
starting at the beginning of the larger string.

•  Example: Locating the string "at" within str1:
 index = str1.indexOf("at");

 After this assignment, index will have the value 1.
•  If "at" had not been found anywhere in str1,
indexOf would have returned –1.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

66

Common String Methods
•  The other version of indexOf begins the search

at a specified position, rather than starting at
position 0.

•  This version is particularly useful for repeating a
previous search to find another occurrence of the
search key.

•  Example: Finding the second occurrence of "at"
in str1:

 index = str1.indexOf("at", index + 1);

 index will be assigned the value 5.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

67

Common String Methods
•  lastIndexOf is similar to indexOf, except

that searches proceed backwards, starting from the
end of the string.

•  Example: Finding the last occurrence of "at" in
str1:

 index = str1.lastIndexOf("at");

 The value of index after the assignment will be
5.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

68

Common String Methods
•  The second version of lastIndexOf begins the

search at a specified position.
•  Example: Finding the next-to-last occurrence of
"at":

 index = str1.lastIndexOf("at", index - 1);

 The value of index after the assignment will be
1.

•  The String class has additional versions of
indexOf and lastIndexOf, whose first
argument is a single character rather than a string.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

69

Common String Methods
•  The length method returns the number of

characters in a string.
•  For example, str1.length() returns the

length of str1, which is 7.
•  The substring method returns a substring: a

series of consecutive characters within a string.
•  One version of substring selects a portion of a

string beginning at a specified position:
 str2 = str1.substring(4);

 After the assignment, str2 will have the value
"cat".

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

70

Common String Methods
•  The other version of substring accepts two

arguments:
–  The position of the first character to include in the

substring
–  The position of the first character after the end of the

substring
•  Example:
 str2 = str1.substring(0, 3);

 After the assignment, str2 will have the value
"Fat".

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

71

Common String Methods
•  toLowerCase and toUpperCase will convert

the letters in a string to lowercase or uppercase.
•  After the assignment
 str2 = str1.toLowerCase();

 the value of str2 is "fat cat".
•  After the assignment
 str2 = str1.toUpperCase();

 the value of str2 is "FAT CAT".
•  Characters other than letters aren’t changed by
toLowerCase and toUpperCase.

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

72

Common String Methods
•  The trim method removes spaces (and other

invisible characters) from both ends of a string.
•  After the assignments
 str1 = " How now, brown cow? ";
 str2 = str1.trim();

 the value of str2 will be
 "How now, brown cow?"

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

73

Chaining Calls of Instance Methods
•  When an instance method returns an object, that

object can be used to call another instance method.
•  For example, the statements
 str2 = str1.trim();
 str2 = str2.toLowerCase();

 can be combined into a single statement:
 str2 = str1.trim().toLowerCase();

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

74

Using + to Concatenate Strings
•  One of the most common string operations is

concatenation: joining two strings together to
form a single string.

•  The String class provides a concat method
that performs concatenation, but it’s rarely used.

•  Concatenation is so common that Java allows the
use of the plus sign (+) to concatenate strings:

 str2 = str1 + "s";

 str2 now contains the string "Fat cats".

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

75

Using + to Concatenate Strings
•  The + operator works even if one of the operands

isn’t a String object. The non-String operand
is converted to string form automatically:

 System.out.println("Celsius equivalent: " +
 celsius);

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

76

Using + to Concatenate Strings
•  If the + operator is used to combine a string with

any other kind of object, the object’s toString
method is called.

•  The statement
 System.out.println("Value of fraction: " + f);

 has the same effect as
 System.out.println("Value of fraction: " +

 f.toString());

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

77

Using + to Concatenate Strings
•  In order for the + operator to mean string

concatenation, at least one of its two operands
must be a string:

 System.out.println("Java" + 1 + 2);
 // Prints "Java12"
 System.out.println(1 + 2 + "Java");
 // Prints "3Java"

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

78

Using + to Concatenate Strings
•  The + operator is useful for breaking up long

strings into smaller chunks:
 System.out.println(
 "Bothered by unsightly white space? " +
 "Remove it quickly and\neasily with " +
 "the new, improved trim method!");

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

79

Using + to Concatenate Strings
•  The += operator can be used to add characters to

the end of a string:
 String str = "The quick brown fox ";
 str += "jumped over ";
 str += "the lazy dog.";

 The final value of str will be "The quick
brown fox jumped over the lazy dog."

•  Concatenating a number with an empty string will
convert the number to string form. For example, if
i contains 37, then i + "" is the string "37".

Chapter 3: Classes and Objects

Java Programming
FROM THE BEGINNING

Exercise: Write a Program
•  Modify the Account class

–  Add username as an instance variable
–  Add setUserName method

•  acct1.setUserName(“Tom White”);

–  Add getName method
–  Test it and print out all the information of a bank account

in the following format
username(accountID) has balance in the bank
e.g.,

Tom Whiten (3420) has $100.00 in the bank

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

80

