
Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

1

Chapter 2

Writing Java Programs

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

2

Java Programs in General
•  Building blocks of a Java program:

–  Classes. A class is a collection of related variables and/
or methods (usually both). A Java program consists of
one or more classes.

–  Methods. A method is a series of statements. Each class
may contain any number of methods.

–  Statements. A statement is a single command. Each
method may contain any number of statements.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Java Program Structure
•  In the Java programming language:

–  A program is made up of one or more classes
–  A class contains one or more methods
–  A method contains program statements

•  These terms will be explored in detail throughout the
course

•  A Java application always contains a method called
main

•  See Lincoln.java

Copyright © 2012 Pearson Education, Inc.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2012 Pearson Education, Inc.

//**
// Lincoln.java Author: Lewis/Loftus
//
// Demonstrates the basic structure of a Java application.
//**

public class Lincoln
{
 //---
 // Prints a presidential quote.
 //---
 public static void main (String[] args)
 {
 System.out.println ("A quote by Abraham Lincoln:");

 System.out.println ("Whatever you are, be a good one.");
 }
}

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Java Program Structure

public class MyProgram
{

}

// comments about the class

class header

class body

Comments can be placed almost anywhere

Copyright © 2012 Pearson Education, Inc.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Java Program Structure

public class MyProgram
{

}

// comments about the class

public static void main (String[] args)

{

}

// comments about the method

method header method body

Copyright © 2012 Pearson Education, Inc.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

7

Executing a Java Program
•  Steps involved in executing a Java program:

–  Enter the program
–  Compile the program
–  Run the program

•  With an integrated development environment
(IDE), all three steps can be performed within the
environment itself.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

8

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

9

Integrated Development Environments
•  An integrated development environment (IDE) is

an integrated collection of software tools for
developing and testing programs.

•  A typical IDE includes at least an editor, a
compiler, and a debugger.

•  A programmer can write a program, compile it,
and execute it, all without leaving the IDE.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

10

Write a Java Program without IDE
1.  Install JDK,
2.  Set the PATH variable

–  With administrator right, update PATH Variable
–  Use batch file, javacmd.bat

3.  Any editor to enter a program, Notepad or WordPad.
–  save the file as a Text Document, Hello.java

4.  Under DOS, compile the program, use the javac:
 javac Hello.java

5.  Under DOS, run a program, use java:
 java Hello

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

11

Comments
•  They provide information that’s useful for anyone

who will need to read the program in the future.
•  Typical uses of comments:

–  To document who wrote the program, when it was
written, what changes have been made to it, and so on.

–  To describe the behavior or purpose of a particular part
of the program, such as a variable or method.

–  To describe how a particular task was accomplished,
which algorithms were used, or what tricks were
employed to get the program to work.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Comments
•  Comments should be included to explain the purpose of

the program and describe processing steps

•  They do not affect how a program works

•  Java comments can take three forms:

// this comment runs to the end of the line

/* this comment runs to the terminating
 symbol, even across line breaks */

/** this is a javadoc comment */

Copyright © 2012 Pearson Education, Inc.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

13

Types of Comments
•  Single-line comments: // Comment style 1

•  Multiline comments: /* Comment style 2 */
•  “Doc” comments:
 /** Comment style 3 */

•  Doc comments are designed to be extracted by a
special program, javadoc.

•  Forgetting to terminate a multiline comment may
cause the compiler to ignore part of a program:

System.out.print("My "); /* forgot to close this
comment...
System.out.print("cat ");
System.out.print("has "); /* so it ends here */
System.out.println("fleas");

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

14

Single-line Comments
•  Many programmers prefer // comments to /* …
*/ comments, for several reasons:
–  Ease of use
–  Safety
–  Program readability
–  Ability to “comment out” portions of a program

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

15

Tokens
•  A Java compiler groups the characters in a

program into tokens.
•  The compiler then puts the tokens into larger

groups (such as statements, methods, and classes).
•  Tokens in the JavaRules program:

public class JavaRules { public static void main (
String [] args) { System . out . println (
"Java rules!") ; } }

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

16

Avoiding Problems with Tokens
•  Always leave at least one space between tokens

that would otherwise merge together:
 publicclassJavaRules {

•  Don’t put part of a token on one line and the other
part on the next line:

 pub

 lic class JavaRules {

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

17

Indentation
•  Programmers use indentation to indicate nesting.
•  An increase in the amount of indentation indicates

an additional level of nesting.
•  The JavaRules program consists of a statement

nested inside a method nested inside a class:

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

18

Brace Placement
•  Put each left curly brace at the end of a line

 public class JavaRules {
 public static void main(String[] args) {

 System.out.println("Java rules!");

 }

 }

•  Put left curly braces on separate lines

 public class JavaRules
 {
 public static void main(String[] args)
 {
 System.out.println("Java rules!");
 }
 }

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

19

Brace Placement
•  To avoid extra lines, the line containing the left

curly brace can be combined with the following line:

 public class JavaRules
 { public static void main(String[] args)
 { System.out.println("Java rules!");
 }
 }

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

20

2.4 Using Variables
•  In Java, every variable must be declared before use
•  Declaring a variable means informing the compiler

of the variable’s name and its properties, including
its type.

int i; // Declares i to be an int variable

•  Several variables can be declared at a time:
 int i, j, k;

•  variable declaration:
–  The type of the variable
–  The name of the variable
–  A semicolon

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

21

Initializing Variables
•  A variable is given a value by using =, the

assignment operator:
 i = 0;

•  Variables need to be initialized before the first use.
•  Variables can be initialized at the time they’re

declared:
 int i = 0;

•  If several variables are declared at the same time,
each variable can have its own initializer:

 int i = 0, j, k = 1;

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

22

Changing the Value of a Variable
•  The assignment operator can be used both to

initialize a variable and to change the value of the
variable later in the program:

 i = 1; // Value of i is now 1
 …
 i = 2; // Value of i is now 2

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

23

Program: Printing a Lottery Number
Lottery.java

// Displays the winning lottery number

public class Lottery {
 public static void main(String[] args) {

 int winningNumber = 973;

 System.out.print("The winning number ");

 System.out.print("in today's lottery is ");

 System.out.println(winningNumber);
 }

}

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

24

Variable Types
•  A partial list of Java types:
 int — An integer
 double — A floating-point number
 boolean — Either true or false
 char — A character

•  Declarations of double, boolean, and char
variables:

 double x, y;
 boolean b;
 char ch;

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

25

Literals
•  Represent a particular number or other value.

–  Examples of int literals: 0 297 30303

–  Examples of double literals:
 48.0 48. 4.8e1 4.8e+1 .48e2 480e-1

•  The only boolean literals are true and false.
•  char literals are enclosed within single quotes:
 'a' 'z' 'A' 'Z' '0' '9' '%' '.' ' ‘

•  Literals are often used as initializers:
 double x = 0.0, y = 1.0;

 boolean b = true;
 char ch = 'f';

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

2.6 Identifiers
•  Identifiers are the "words" in a program

•  A Java identifier can be made up of letters, digits, the
underscore character (_), and the dollar sign

•  Identifiers cannot begin with a digit,

•  Java is case sensitive: Total, total, and TOTAL
are different identifiers

•  By convention, programmers use different case styles for
different types of identifiers, such as
–  title case for class names - Lincoln

–  upper case for constants - MAXIMUM

Copyright © 2012 Pearson Education, Inc.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Identifiers
•  Sometimes the programmer chooses the identifier

(such as Lincoln)

•  Sometimes we are using another programmer's code, so
we use the identifiers that he or she chose (such as
println)

•  Often we use special identifiers called reserved words
that already have a predefined meaning in the language

•  A reserved word cannot be used in any other way

Copyright © 2012 Pearson Education, Inc.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

28

Multiword Identifiers
•  When an identifier consists of multiple words, it’s

important to mark the boundaries between words.
•  One way to break up long identifiers is to use

underscores between words:
 last_index_of

•  Another technique is to capitalize the first letter of
each word after the first:

 lastIndexOf

 This technique is the one commonly used in Java.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

29

Conventions
•  A rule that we agree to follow, even though it’s

not required by the language, is said to be a
convention.

•  A common Java convention is beginning a class
name with an uppercase letter:

 Color

 FontMetrics
 String

•  Names of variables and methods, by convention,
never start with an uppercase letter.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

30

Keywords
•  The following keywords can’t be used as

identifiers because Java has already given them a
meaning:

 abstract double int super
 boolean else interface switch
 break extends long synchronized
 byte final native this
 case finally new throw
 catch float package throws
 char for private transient
 class goto protected try
 const if public void
 continue implements return volatile
 default import short while
 do instanceof static

•  null, true, and false are also reserved.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

31

Performing Calculations
•  In general, the right side of an assignment can be

an expression.
•  A literal is an expression, and so is a variable.
•  More complicated expressions are built out of

operators and operands.
•  In the expression 5 / 9, the operands are 5 and 9,

and the operator is /.
•  The operands in an expression can be variables,

literals, or other expressions.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

32

Operators
•  Java’s arithmetic operators: + - * /%
 6 + 2 ⇒ 8
 6 / 2 ⇒ 3

•  Integer Division
–  If the result of dividing two integers has a fractional part, Java

throws it away (we say that it truncates the result).
 1 / 2 ⇒ 0
 5 / 3 ⇒ 1

•  unary arithmetic operators: require just one operand
 + Plus, +3
 - Minus, -3

•  + and - are often used in conjunction with literals

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

33

double Operands
•  +, -, *, and / accept double operands: Binary

Operators
 6.1 + 2.5 ⇒ 8.6
•  int and double operands can be mixed:
 6.1 / 2 ⇒ 3.05

•  The % operator produces the remainder when the left
operand is divided by the right operand:

 13 % 3 ⇒ 1
•  % is normally used with integer operands.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

34

Round-Off Errors
•  Calculations involving floating-point numbers can

sometimes produce surprising results.
•  If d is declared as follows, its value will be

0.09999999999999987 rather than 0.1:
 double d = 1.2 - 1.1;

•  Round-off errors such as this occur because some
numbers (1.2 and 1.1, for example) can’t be
stored in double form with complete accuracy.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

35

Operator Precedence
•  What’s the value of 6 + 2 * 3?

–  (6 + 2) * 3, which yields 24?
–  6 + (2 * 3), which yields 12?

•  Operator precedence resolves issues such as this.
•  *, /, and % take precedence over + and -.
•  Examples:
 5 + 2 / 2 ⇒ 5 + (2 / 2) ⇒ 6
 8 * 3 - 5 ⇒ (8 * 3) - 5 ⇒ 19
 6 - 1 * 7 ⇒ 6 - (1 * 7) ⇒ –1
 9 / 4 + 6 ⇒ (9 / 4) + 6 ⇒ 8
 6 + 2 % 3 ⇒ 6 + (2 % 3) ⇒ 8

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

36

Associativity
•  Precedence rules are of no help when it comes to

determining the value of 1 - 2 - 3.

•  Associativity rules come into play when
precedence rules alone aren’t enough.

•  The binary +, -, *, /, and % operators are all left
associative:

 2 + 3 - 4 ⇒ (2 + 3) - 4 ⇒ 1
 2 * 3 / 4 ⇒ (2 * 3) / 4 ⇒ 1

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

37

Parentheses in Expressions
•  Parentheses can be used to override normal

precedence and associativity rules.
•  Parentheses in the expression (6 + 2) * 3 force

the addition to occur before the multiplication.
•  It’s often a good idea to use parentheses even

when they’re not strictly necessary:
 (x * x) + (2 * x) - 1

•  However, don’t use too many parentheses:
 ((x) * (x)) + ((2) * (x)) - (1)

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

38

Assignment Operators
•  = is used to save calculation result in a variable:
 area = height * width;

•  Assigning a double value to an int variable is
not legal. Assigning an int value to a double
variable is OK.

•  = often uses the old value of a variable as part of
the expression that computes the new value.

 i = i + 1;

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

39

Compound Assignment Operators
•  A partial list of compound assignment operators:

 += Combines addition and assignment
 -= Combines subtraction and assignment
 *= Combines multiplication and assignment
 /= Combines division and assignment
 %= Combines remainder and assignment
 i += 2; // Same as i = i + 2;
 i -= 2; // Same as i = i - 2;

 i *= 2; // Same as i = i * 2;

 i /= 2; // Same as i = i / 2;
 i %= 2; // Same as i = i % 2;

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

40

Program: Converting from
Fahrenheit to Celsius

 FtoC.java

// Converts a Fahrenheit temperature to Celsius

public class FtoC {
 public static void main(String[] args) {

 double fahrenheit = 98.6;

 double celsius = (fahrenheit - 32.0) * (5.0 / 9.0);

 System.out.print("Celsius equivalent: ");

 System.out.println(celsius);
 }

}

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Exercise: Write a Program: FtoC1
•  Converting the following Fahrenheit to Celsius

and print them out.
86  32 100 201.2

•  Output the average Celsius degree

•  try: Increase each Fahrenheit by n=5 degree and
do the conversion

 Copyright © 2000 W. W. Norton & Company.
All rights reserved.

41

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

42

Constants
•  A constant is a value that doesn’t change during the

execution. Can be assigned to variables
 double freezingPoint = 32.0;

 double degreeRatio = 5.0 / 9.0;

•  To prevent a constant from being changed, the word
final can be added to its declaration:

 final double freezingPoint = 32.0;
 final double degreeRatio = 5.0 / 9.0;

•  Constant names are often written in uppercase letters, with
underscores to indicate boundaries between words:

 final double FREEZING_POINT = 32.0;

 final double DEGREE_RATIO = 5.0 / 9.0;

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

43

Adding Constants to the FtoC Program
 FtoC2.java

// Converts a Fahrenheit temperature to Celsius

public class FtoC2 {
 public static void main(String[] args) {
 final double FREEZING_POINT = 32.0;
 final double DEGREE_RATIO = 5.0 / 9.0;
 double fahrenheit = 98.6;
 double celsius =
 (fahrenheit - FREEZING_POINT) * DEGREE_RATIO;
 System.out.print("Celsius equivalent: ");
 System.out.println(celsius);
 }
}

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

44

Methods
•  A method is a series of statements that can be

executed as a unit.
•  A method does nothing until it is activated, or

called.
•  To call a method, we write the name of the

method, followed by a pair of parentheses.
•  The method’s arguments (if any) go inside the

parentheses.
•  A call of the println method:
 System.out.println("Java rules!");

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

45

Declaring Class Methods
•  Example of a class method declaration:

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

46

Parameters for Class Methods
•  Java requires that main’s result type be void

and that main have one parameter of type
String[] (array of String objects).

•  Other class methods may have any number of
parameters, including none.

•  If a method has more than one parameter, each
parameter except the last must be followed by a
comma.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

47

Local Variables
•  The body of any class or instance method may

contain declarations of local variables.
•  Properties of local variables:

–  A local variable can be accessed only within the
method that contains its declaration.

–  When a method returns, its local variables no longer
exist, so their values are lost.

–  A method is not allowed to access the value stored in a
local variable until the variable has been initialized.

–  A local variable can be declared final to indicate that
its value doesn’t change after initialization.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

48

The return Statement
•  When a method has a result type other than void,

a return statement must be used to specify what
value the method returns.

•  Form of the return statement:
 return expression ;

•  The expression is often just a literal or a variable:
 return 0;
 return n;

•  Expressions containing operators are also allowed:
 return x * x - 2 * x + 1;

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

49

Methods in the Math Class
•  The Math class contains a number of methods for

performing mathematical calculations.
•  These methods are called by writing Math.name,

where name is the name of the method.
•  The methods in the Math class return a value

when they have completed execution.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

50

The Math Methods examples
•  pow method raises a number to a power:
 Math.pow(-2.0, 3.0) ⇒ –8.0

•  sqrt method computes the square root of a number:
 Math.sqrt(4.0) ⇒ 2.0

•  abs method computes the absolute value of a number:
 Math.abs(-2.0) ⇒ 2.0

•  max method finds the larger of two numbers:
 Math.max(3.0, 5.5) ⇒ 5.5

•  The value returned by abs, max, and min depends on the
type of the argument:
–  If the argument is an int, the methods return an int.
–  If the argument is a double, the methods return a double.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

51

The round Method
•  The round method rounds a double value to

the nearest integer:
 Math.round(4.1) ⇒ 4
 Math.round(4.5) ⇒ 5
 Math.round(-4.9) ⇒ –5
 Math.round(-5.5) ⇒ –5
•  round returns a long value rather than an int

value.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

52

Using the Result of a Method Call
•  The value returned by a method can be saved in a

variable for later use:
 double y = Math.abs(x);

•  Another option is to use the result returned by a
method directly, without first saving it in a
variable. For example, the statements

 double y = Math.abs(x);
 double z = Math.sqrt(y);

 can be combined into a single statement:
 double z = Math.sqrt(Math.abs(x));

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

53

Using the Result of a Method Call
•  Values returned by methods can also be used as

operands in expressions.
•  Example (finding the roots of a quadratic equation):
 double root1 =

 (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);
 double root2 =

 (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);

•  Because the square root of b2 – 4ac is used twice, it
would be more efficient to save it in a variable:

 double discriminant = Math.sqrt(b * b - 4 * a * c);
 double root1 = (-b + discriminant) / (2 * a);
 double root2 = (-b - discriminant) / (2 * a);

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

54

Using the Result of a Method Call
•  The value returned by a method can be printed

without first being saved in a variable:
 System.out.println(Math.sqrt(2.0));

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

55

2.10 Input and Output
•  Most programs require both input and output.
•  Input is any information fed into the program

from an outside source.
•  Output is any data produced by the program and

made available outside the program.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

56

Displaying Output on the Screen
•  Properties of System.out.print and
System.out.println:
–  Can display any single value, regardless of type.
–  The argument can be any expression, including a

variable, literal, or value returned by a method.
–  println always advances to the next line after

displaying its argument; print does not.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

57

Displaying a Blank Line
•  One way to display a blank line is to leave the

parentheses empty when calling println:
 System.out.println("Hey Joe");

 System.out.println(); // Write a blank line

•  The other is to insert \n into a string that’s being
displayed by print or println:

 System.out.println("A hop,\na skip,\n\nand a jump");

 Each occurrence of \n causes the output to begin
on a new line.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

58

Escape Sequences
•  The backslash character combines with the

character after it to form an escape sequence: a
combination of characters that represents a single
character.

•  The backslash character followed by n forms \n,
the new-line character.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

59

Escape Sequences
•  Another common escape sequence is \", which

represents " (double quote):
 System.out.println("He yelled \"Stop!\" and we stopped.");

•  In order to print a backslash character as part of a string,
the string will need to contain two backslash characters:

 System.out.println("APL\\360");

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

60

Printing Multiple Items
•  The + operator can be used to combine multiple items

into a single string for printing purposes:
 System.out.println("Celsius equivalent: " + celsius);

•  At least one of the two operands for the + operator must
be a string.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

61

Application Programming Interfaces
•  The packages that come with Java belong to the

Java Application Programming Interface (API).
•  In general, an API consists of code that someone

else has written but that we can use in our
programs.

•  Typically, an API allows an application
programmer to access a lower level of software.

•  In particular, an API often provides access to the
capabilities of a particular operating system or
windowing system.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

62

Packages
•  Java allows classes to be grouped into larger units

known as packages.
•  Java comes with a large number of standard

packages.
•  Accessing the classes that belong to a package is

done by using an import declaration:
 import package-name . * ;

•  Import declarations go at the beginning of a program.
A program that needs SimpleIO or Convert
would begin with the line

 import jpb.*;

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

63

Program: Converting from Fahrenheit
to Celsius (Revisited)

FtoC3.java

// Converts a Fahrenheit temperature entered by the user to
// Celsius

import java.util.Scanner;

public class FtoC3 {
 public static void main(String[] args) {
 final double FREEZING_POINT = 32.0;
 final double DEGREE_RATIO = 5.0 / 9.0;

 Scanner userInput=new Scanner(System.in);
 System.out.print(("Enter Fahrenheit temperature: ");
 double fahrenheit = userInput.nextDouble();
 double celsius =

 (fahrenheit - FREEZING_POINT) * DEGREE_RATIO;
 System.out.println("Celsius equivalent: " + celsius);
 }
}

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Using Scanner for User Input
import java.util.Scanner;
public class GPAAverage2 {
 public static void main(String[] args) {
 Scanner userInput=new Scanner(System.in);
 System.out.print("Enter Course 1 score: ");
 double course1 = userInput.nextDouble();
 System.out.print("Enter Course 2 score: ");
 double course2 = userInput.nextDouble();

 double gpaAverage = (course1 + course2) / 2;
 System.out.println("\nGPA average: " + gpaAverage);
 }
}

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

64

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Exercise: Write a Program: CourseAvg
•  The CourseAvg program will calculate a class

average, using the following percentages:
 2 Programs 30%
 2 Quizzes 10%
 Test 1 15%
 Test 2 15%
 Final exam 30%

•  The user will enter the grade for each program (0–
100), the score on each quiz (0–10), and the
grades on the two tests and the final (0–100).

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

65

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

66

Debugging
•  Debugging is the process of finding bugs in a

program and fixing them.
•  Types of errors:

–  Compile-time errors
–  Run-time errors (called exceptions in Java)
–  Incorrect behavior

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

67

Fixing Compile-Time Errors
•  Strategies for fixing compile-time errors:

–  Read error messages carefully. Example:

Buggy.java:8: Undefined variable: i

 System.out.println(i);

 ^

Buggy.java:10: Variable j may not have been initialized

 System.out.println(j);

 ^

–  Pay attention to line numbers.
–  Fix the first error.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

68

Fixing Compile-Time Errors
–  Don’t trust the compiler (completely). The error isn’t

always on the line reported by the compiler. Also, the
error reported by the compiler may not accurately
indicate the nature of the error. Example:

 System.out.print("Value of i: ")
 System.out.println(i);

 A semicolon is missing at the end of the first statement,
but the compiler reports a different error:
 Buggy.java:8: Invalid type expression.
 System.out.print("Value of i: ")
 ^
 Buggy.java:9: Invalid declaration.
 System.out.println(i);
 ^

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

69

Fixing Run-Time Errors
•  When a run-time error occurs, a message will be

displayed on the screen. Example:
 Exception in thread "main"

 java.lang.NumberFormatException: foo

 at java.lang.Integer.parseInt(Compiled Code)
 at java.lang.Integer.parseInt(Integer.java:458)

 at Buggy.main(Buggy.java:11)

•  Once we know what the nature of the error is and
where the error occurred, we can work backwards
to determine what caused the error.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

70

Fixing Behavioral Errors
•  Errors of behavior are the hardest problems to fix,

because the problem probably lies either in the
original algorithm or in the translation of the
algorithm into a Java program.

•  Other than simply checking and rechecking the
algorithm and the program, there are two
approaches to locating the source of a behavioral
problem, depending on whether a debugger is
available.

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

71

Using a Debugger
•  A debugger doesn’t actually locate and fix bugs.

Instead, it allows the programmer to see inside a
program as it executes.

•  Things to look for while debugging:
–  Order of statement execution
–  Values of variables

•  Key features of a debugger:
–  Step
–  Breakpoint
–  Watch

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

72

Debugging Without a Debugger
•  The JDK includes a debugger, named jdb.
•  A debugger isn’t always necessary, however.
•  If a run-time error occurs in a Java program, the

message displayed by the Java interpreter may be
enough to identify the bug.

•  Also, System.out.println can be used to
print the values of variables for the purpose of
debugging:

 System.out.println("Value of a: " + a +

 " Value of b: " + b);

Chapter 2: Writing Java Programs

Java Programming
FROM THE BEGINNING

Copyright © 2000 W. W. Norton & Company.
All rights reserved.

73

Choosing Test Data
•  Testing a program usually requires running it

more than once, using different input each time.
•  One strategy, known as boundary-value testing,

involves entering input at the extremes of what the
program considers to be legal.

•  Boundary-value testing is both easy to do and
surprisingly good at revealing bugs.

