
INVITATION TO
Computer Science 1 1

Chapter 5
Computer Systems Organization

Objectives

After studying this chapter, students will be able to:
•  Enumerate the characteristics of the Von Neumann

architecture
•  Describe the components of a RAM system, including

how fetch and store operations work, and the use of
cache memory to speed up access time

•  Explain why mass storage devices are important, and
how DASDs like hard drives or DVDs work

•  Diagram the components of a typical ALU and illustrate
how the ALU data path operates

Invitation to Computer Science, 6th Edition 2

Objectives (continued)

After studying this chapter, students will be able to:
•  Describe the control unit’s Von Neumann cycle, and

explain how it implements a stored program
•  List and explain the types of instructions and how they

are encoded
•  Diagram the components of a typical Von Neumann

machine
•  Show the sequence of steps in the fetch, decode, and

execute cycle to perform a typical instruction
•  Describe non-Von Neumann parallel processing

systems

Invitation to Computer Science, 6th Edition 3

 Introduction

•  This chapter changes the level of abstraction
•  Focus on functional units and computer

organization
•  A hierarchy of abstractions hides unneeded

details
•  Change focus from transistors, to gates, to circuits

as the basic unit

Invitation to Computer Science, 6th Edition 4

5

The Components of a Computer
System

Von Neumann architecture
•  Foundation for nearly all modern computers
•  Characteristics:

–  Central Processing Unit (CPU)
•  memory
•  input/output
•  arithmetic/logic unit
•  control unit

–  Stored program concept
–  Sequential execution of instructions

Invitation to Computer Science, 6th Edition 6

Invitation to Computer Science, 6th Edition 7

The Components of a Computer
System Memory and Cache (continued)

•  Memory: functional unit where data is stored/
retrieved

•  Random access memory (RAM)
–  Organized into cells, each given a unique address
–  Equal time to access any cell
–  Cell values may be read and changed

•  Cell size/memory width typically 8 bits
•  Maximum memory size/address space is 2N,

where N is length of address

Invitation to Computer Science, 6th Edition 8

Invitation to Computer Science, 6th Edition 9

Invitation to Computer Science, 6th Edition 10

The Components of a Computer
System Memory and Cache (continued)

•  Fetch: retrieve from memory (nondestructive
fetch)

•  Store: write to memory (destructive store)
•  Memory access time

–  time required to fetch/store
–  Modern RAM requires 5-10 nanoseconds

•  MAR holds memory address to access
•  MDR receives data from fetch, holds data to be

stored

Invitation to Computer Science, 6th Edition 11

The Components of a Computer
System Memory and Cache (continued)

•  Memory system circuits: decoder and fetch/store
controller

•  Decoder converts MAR into signal to a specific
memory cell
–  One-dimensional versus two-dimensional memory

organization
•  Fetch/Store controller = traffic cop for MDR

–  Takes in a signal that indicates fetch or store
–  Routes data flow to/from memory cells and MDR

Invitation to Computer Science, 6th Edition 12

13

14

15

The Components of a Computer
System Memory and Cache (continued)

•  RAM speeds increased more slowly than CPU
speeds

•  Cache memory is fast but expensive
•  Principle of locality:

–  Values close to recently-accessed memory are more
likely to be accessed

–  Load neighbors into cache and keep recent there
•  Cache hit rate: percentage of times values are

found in cache

Invitation to Computer Science, 6th Edition 16

The Components of a Computer
System Input/Output and Mass Storage

•  Input/Output (I/O) connects the processor to the
outside world:
–  Humans: keyboard, monitor, etc.
–  Data storage: hard drive, DVD, flash drive
–  Other computers: network

•  RAM = volatile memory (gone without power)
•  Mass storage systems = nonvolatile memory

–  Direct access storage devices (DASDs)
–  Sequential access storage devices (SASDs)

Invitation to Computer Science, 6th Edition 17

The Components of a Computer
System I/O and Mass Storage (continued)

DASDs
•  Hard drives, CDs, DVDs contain disks

–  Tracks: concentric rings around disk surface
–  Sectors: fixed size segments of tracks, unit of

retrieval
–  Time to retrieve data based on:

•  seek time
•  latency
•  transfer time

•  Other non-disk DASDs: flash memory, optical

Invitation to Computer Science, 6th Edition 18

Invitation to Computer Science, 6th Edition 19

The Components of a Computer
System I/O and Mass Storage (continued)

•  DASDs and SASDs are orders of magnitude slower
than RAM: (microseconds or milliseconds)

•  I/O Controller manages data transfer with slow I/O
devices, freeing processor to do other work

•  Controller sends an interrupt signal to processor
when I/O task is done

Invitation to Computer Science, 6th Edition 20

Invitation to Computer Science, 6th Edition 21

The Components of a Computer
System The Arithmetic/Logic Unit

•  ALU is part of processor
•  Contains circuits for arithmetic:

–  addition, subtraction, multiplication, division
•  Contains circuits for comparison and logic:

–  equality, and, or, not
•  Contains registers: super-fast, dedicated memory

connected to circuits
•  Data path: how information flows in ALU

–  from registers to circuits
–  from circuits back to registers

Invitation to Computer Science, 6th Edition 22

Invitation to Computer Science, 6th Edition 23

24

The Components of a Computer
System The ALU (continued)

•  How to choose which operation to perform?
–  Option 1: decoder signals one circuit to run
–  Option 2: run all circuits, multiplexor selects one

output from all circuits
•  In practice, option 2 is usually chosen

•  Information flow:

–  Data comes in from outside ALU to registers
–  Signal comes to multiplexor, which operation
–  Result goes back to register, and then to outside

Invitation to Computer Science, 6th Edition 25

Invitation to Computer Science, 6th Edition 26

27

The Components of a Computer
System The Control Unit

•  Stored program characteristic:
–  Programs are encoded in binary and stored in

computer’s memory
•  Control unit fetches instructions from memory,

decodes them, and executes them
•  Instructions encoded:

–  Operation code (op code) tells which operation
–  Addresses tell which memory addresses/registers to

operate on

Invitation to Computer Science, 6th Edition 28

Invitation to Computer Science, 6th Edition 29

The Components of a Computer
System The Control Unit (continued)

•  Machine language:
–  Binary strings that encode instructions
–  Instructions can be carried out by hardware
–  Sequences of instructions encode algorithms

•  Instruction set:
–  The instructions implemented by a particular chip
–  Each kind of processor speaks a different language

Invitation to Computer Science, 6th Edition 30

The Components of a Computer
System The Control Unit (continued)

•  RISC machines and CISC machines
–  Reduced instruction set computers:

•  small instruction sets
•  each instruction highly optimized
•  easy to design hardware

–  Complex instruction set computers:
•  large instruction set
•  single instruction can do a lot of work
•  complex to design hardware

•  Modern hardware: some RISC and some CISC

Invitation to Computer Science, 6th Edition 31

The Components of a Computer
System The Control Unit (continued)

Kinds of instructions:
•  Data transfer, e.g., move data from memory to

register
•  Arithmetic, e.g., add, but also “and”
•  Comparison, compare two values
•  Branch, change to a non-sequential instruction

–  Branching allows for conditional and loop forms
–  E.g., JUMPLT a = If previous comparison of A and B

found A < B, then jump to instruction at address a

Invitation to Computer Science, 6th Edition 32

33

The Components of a Computer
System The Control Unit (continued)

Control unit contains:
•  Program counter (PC) register: holds address of

next instruction
•  Instruction register (IR): holds encoding of current

instruction
•  Instruction decoder circuit

–  Decodes op code of instruction, and signals helper
circuits, one per instruction

•  Helpers send addresses to proper circuits
•  Helpers signal ALU, I/O controller, memory

Invitation to Computer Science, 6th Edition 34

Invitation to Computer Science, 6th Edition 35

36

Putting the Pieces Together---the Von
Neumann Architecture

•  Combine previous pieces: Von Neumann machine
•  Fetch-Decode-Execute cycle

–  machine repeats until HALT instruction or error
–  also called Von Neumann cycle

•  Fetch phase: get next instruction into memory
•  Decode phase: instruction decoder gets op code
•  Execute phase: different for each instruction

Invitation to Computer Science, 6th Edition 37

38

Putting the Pieces Together---the Von
Neumann Architecture (continued)

Notation for computer’s behavior:

Invitation to Computer Science, 6th Edition 39

CON(A) Contents of memory cell A
A -> B Send value in register A to register B

(special registers: PC, MAR, MDR, IR, ALU,
R, GT, EQ, LT, +1)

FETCH Initiate a memory fetch operation
STORE Initiate a memory store operation

ADD Instruct the ALU to select the output of the
adder circuit

SUBTRACT Instruct the ALU to select the output of the
subtract circuit

Putting the Pieces Together---the Von
Neumann Architecture (continued)

Fetch phase:
1.  PC -> MAR Send address in PC to MAR
2.  FETCH Initiate Fetch, data to MDR
3.  MDR -> IR Move instruction in MDR to IR
4.  PC + 1 -> PC Add one to PC

Decode phase:

1.  IRop -> instruction decoder

Invitation to Computer Science, 6th Edition 40

Invitation to Computer Science, 6th Edition 41

Putting the Pieces Together---the Von
Neumann Architecture (continued)

LOAD X meaning CON(X) -> R
1.  IRaddr -> MAR Send address X to MAR
2.  FETCH Initiate Fetch, data to MDR
3.  MDR -> R Move data in MDR to R

STORE X meaning R -> CON(X)

1.  IRaddr -> MAR Send address X to MAR
2.  R -> MDR Send data in R to MDR
3.  STORE Initiate store of MDR to X

Invitation to Computer Science, 6th Edition 42

Putting the Pieces Together---the Von
Neumann Architecture (continued)

ADD X meaning R + CON(X) -> R
1.  IRaddr -> MAR Send address X to MAR
2.  FETCH Initiate Fetch, data to MDR
3.  MDR -> ALU Send data in MDR to ALU
4.  R -> ALU Send data in R to ALU
5.  ADD Select ADD circuit as result
6.  ALU -> R Copy selected result to R

JUMP X meaning get next instruction from X
1.  IRaddr -> PC Send address X to PC

Invitation to Computer Science, 6th Edition 43

Putting the Pieces Together---the Von
Neumann Architecture (continued)

COMPARE X meaning:
 if CON(X) > R then GT = 1 else 0
 if CON(X) = R then EQ = 1 else 0
 if CON(X) < R then LT = 1 else 0

1.  IRaddr -> MAR Send address X to MAR
2.  FETCH Initiate Fetch, data to MDR
3.  MDR -> ALU Send data in MDR to ALU
4.  R -> ALU Send data in R to ALU
5.  SUBTRACT Evaluate CON(X) – R

 Sets EQ, GT, and LT
Invitation to Computer Science, 6th Edition 44

Putting the Pieces Together---the Von
Neumann Architecture (continued)

JUMPGT X meaning:
 if GT = 1 then jump to X
 else continue to next instruction

1.  IF GT = 1 THEN IRaddr -> PC

Invitation to Computer Science, 6th Edition 45

Non-Von Neumann Architectures

•  Problems to solve are always larger
•  Computer chip speeds no longer increase

exponentially
•  Reducing size puts gates closer together, faster

–  Speed of light pertains to signals through wire
–  Cannot put gates much closer together
–  Heat production increases too fast

•  Von Neumann bottleneck: inability of sequential
machines to handle larger problems

Invitation to Computer Science, 6th Edition 46

47

Non-Von Neumann Architectures
(continued)

•  Non-Von Neumann architectures:
–  Other ways to organize computers
–  Most are experimental/theoretical, EXCEPT parallel

processing
•  Parallel processing:

–  Use many processing units operating at the same
time

–  Supercomputers (in the past)
–  Desktop multi-core machines (in the present)
–  “The cloud” (in the future)

Invitation to Computer Science, 6th Edition 48

Non-Von Neumann Architectures
(continued)

SIMD parallel processing:
•  Single Instruction stream/Multiple Data streams
•  Processor contains one control unit, but many

ALUs
•  Each ALU operates on its own data
•  All ALUs perform exactly the same instruction at

the same time
•  Older supercomputers, vector operations

(sequences of numbers)

Invitation to Computer Science, 6th Edition 49

Invitation to Computer Science, 6th Edition 50

Non-Von Neumann Architectures
(continued)

MIMD parallel processing:
•  Multiple Instruction streams/Multiple Data streams
•  Replicate whole processors, each doing its own

thing
•  Communication over interconnection network
•  Off-the-shelf processors work fine
•  Scalable: can always add more processors cheaply
•  Communication costs can slow performance

Invitation to Computer Science, 6th Edition 51

Invitation to Computer Science, 6th Edition 52

Non-Von Neumann Architectures
(continued)

Varieties of MIMD systems:
•  Special-purpose systems, newer supercomputers
•  Cluster computing, standard machines

communicating over LAN or WAN
•  Grid computing, machines of varying power, over

large distances/Internet
–  Example: SETI project

•  Hot research are: parallel algorithms
–  Need to take advantage of all this processing power

Invitation to Computer Science, 6th Edition 53

Summary

•  We must abstract in order to manage system
complexity

•  Von Neumann architecture is standard for modern
computing

•  Von Neumann machines have memory, I/O, ALU,
and control unit; programs are stored in memory;
execution is sequential unless program says other

•  Memory is organized into addressable cells; data is
fetched and stored based on MAR and MDR; uses
decoder and fetch/store controller

Invitation to Computer Science, 6th Edition 54

Summary (continued)

•  Mass data storage is nonvolatile; disks store and
fetch sectors of data stored in tracks

•  I/O is slow, needs dedicated controller to free CPU
•  ALU performs computations, moving data to/from

dedicated registers
•  Control unit fetches, decodes, and executes

instructions; instructions are written in machine
language

•  Parallel processing architectures can perform
multiple instructions at one time

Invitation to Computer Science, 6th Edition 55

