Chapter 4 The Building Blocks: Binary Numbers, Boolean Logic, and Gates

INVITATION TO Computer Science

Objectives

After studying this chapter, students will be able to:

- Translate between base-ten and base-two numbers, and represent negative numbers using both signmagnitude and two's complement representations
- Explain how floating-point numbers, character, sounds, and images are represented inside the computer
- Build truth tables for Boolean expressions and determine when they are true or false
- Describe the relationship between Boolean logic and computer hardware/circuits

Objectives (continued)

After studying this chapter, students will be able to:

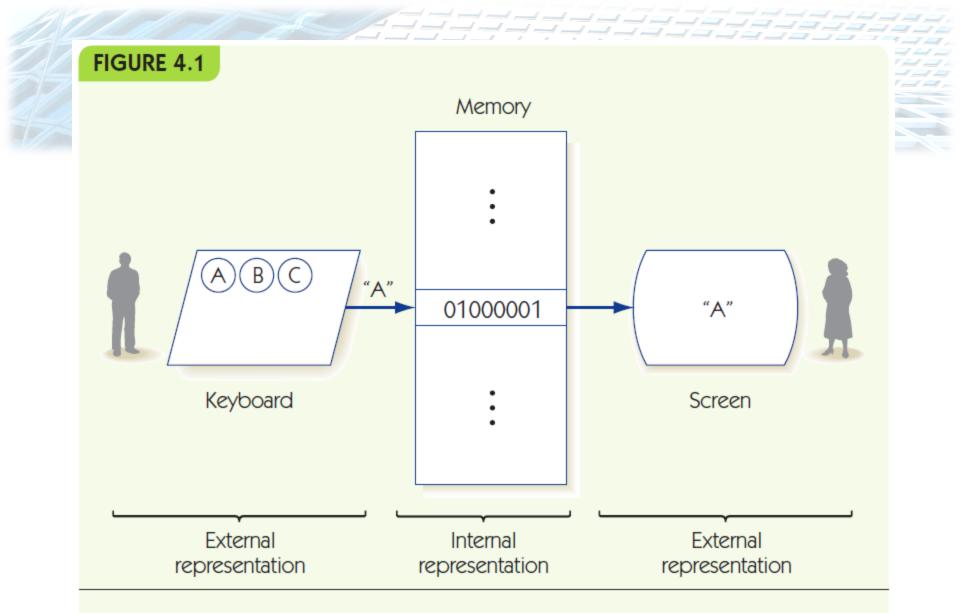
- Construct circuits using the sum-of-products circuit design algorithm, and analyze simple circuits to determine their truth tables
- Explain how the compare-for-equality (CE) circuit works and its construction from one-bit CE circuits, and do the same for the adder circuit and its one-bit adder parts
- Describe the purpose and workings of multiplexor and decoder control circuits

Introduction

- This chapter is about how computers work
- All computing devices are built on the ideas in this chapter
 - Laptops, desktops
 - Servers, supercomputers
 - Game systems, cell phones, MP3 players
 - Calculators, singing get-well cards
 - Embedded systems, in toys, cars, microwaves, etc.

The Binary Numbering System

- How can an electronic (or magnetic) machine represent information?
- Key requirements: clear, unambiguous, reliable
- External representation is human-oriented
 - base-10 numbers
 - keyboard characters
- Internal representation is computer-oriented
 - base-2 numbers
 - base-2 codes for characters



Distinction between external and internal representation of information

- The binary numbering system is a base-2 positional numbering system
- Base ten:
 - Uses 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Each place corresponds to a power of 10
 - $-1,943 = 1 * 10^{3} + 9 * 10^{2} + 4 * 10^{1} + 3 * 10^{0}$
- Base two:
 - Uses 2 digits: 0, 1
 - Each place corresponds to a power of 2
 - $-1101 = 1 * 2^{3} + 1 * 2^{2} + 0 * 2^{1} + 1 * 2^{0} = 13$

FIGURE 4.2

Binary	Decimal	Binary	Decimal
0	0	10000	16
1	1	10001	17
10	2	10010	18
11	3	10011	19
100	4	10100	20
101	5	10101	21
110	6	10110	22
111	7	10111	23
1000	8	11000	24
1001	9	11001	25
1010	10	11010	26
1011	11	11011	27
1100	12	11100	28
1101	13	11101	29
1110	14	11110	30
1111	15	11111	31

Binary-to-decimal conversion table

8

- Converting from binary to decimal
 - Add up powers of two where a 1 appears in the binary number
- Converting from decimal to binary
 - Repeatedly divide by two and record the remainder
 - Example, convert 9:
 - 9/2 = 4 remainder 1, binary number = 1
 - 4/2 = 2 remainder 0, binary number = 01
 - 2/2 = 1 remainder 0, binary number = 001
 - 1/2 = 0 remainder 1, binary number = 1001

- Computers use fixed-length binary numbers for integers, e.g., with 4 bits could represent 0 to 15
- Arithmetic overflow: when computer tries to make a number that is too large, e.g. 14 + 2 with 4 bits
- Binary addition: 0+0=0, 0+1=1, 1+0=1, 1+1=0 with carry of 1
- Example: 0101 + 0011 = 1000

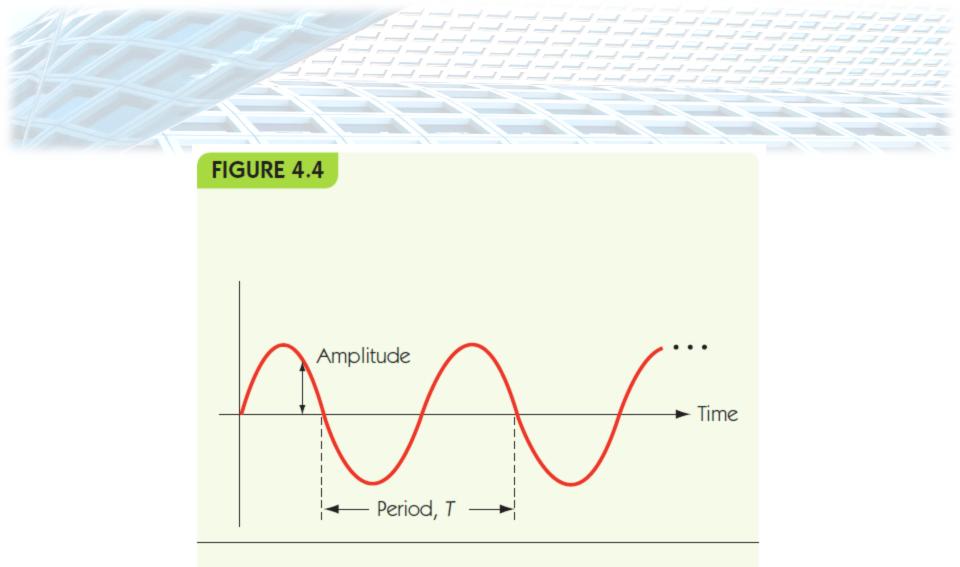
- Signed integers include negative numbers
- **Sign/magnitude notation** uses 1 bit for sign, the rest for value
 - +5 = 0101, -5 = 1101
 - -0 = 0000 and 1000!
- Two's complement representation: to make the negative of a number, flip every bit and add one

- +5 = 0101, -5 = 1010 + 1 = 1011

-0 = 0000, -0 = 1111 + 1 = 0000

- Floating point numbers use binary scientific notation
 - Scientific notation, base 10: 1.35×10^{-5}
 - Base 2: $3.25_{10} = 11.01_2 = 1.101 \times 2^1$
- Characters and text: map characters onto binary numbers in a standard way
 - ASCII (8-bit numbers for each character)
 - Unicode (16-bit numbers for each character)

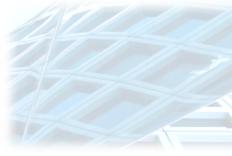
- Sounds and images require converting naturally analog representations to digital representations
- Sound waves characterized by:
 - amplitude: height of the wave at a moment in time
 - **period:** length of time until wave pattern repeats
 - frequency: number of periods per time unit

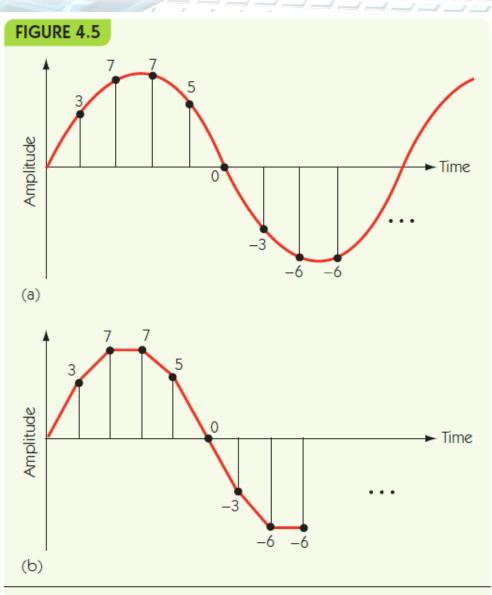


Example of sound represented as a waveform

14

- **Digitize**: to convert to a digital form
- **Sampling**: record sound wave values at fixed, discrete intervals
- To reproduce sound, approximate using samples
- Quality determine by:
 - Sampling rate: number of samples per second
 - More samples = more accurate wave form
 - **Bit depth:** number of bits per sample
 - More bits = more accurate amplitude

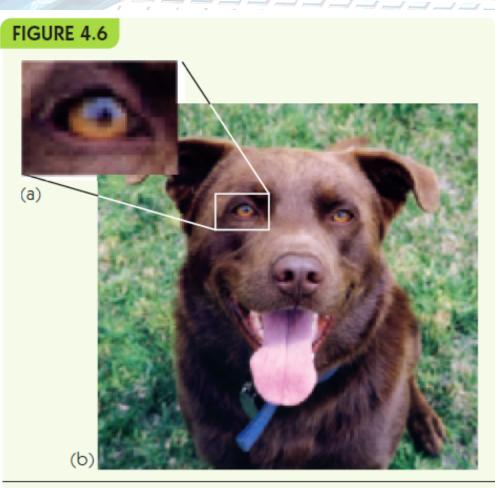




Digitization of an analog signal

- (a) Sampling the original signal
- (b) Recreating the signal from the sampled values

- Image sampling: record color or intensity at fixed, discrete intervals in two dimensions
- Pixels: individual recorded samples
- RGB encoding scheme:
 - Colors are combinations of red, green, and blue
 - One byte each for red, green, and blue
- Raster graphics store picture as two-d grid of pixel values

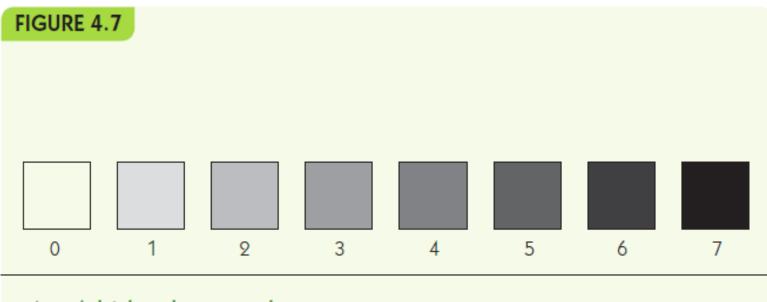


Example of a digitized photograph(a) Individual pixels in the photograph(b) Photograph

Invitation to Computer Science, 6th Edition

18





An eight-level gray scale

- Data size: how much to store:
 - 1000 integer values
 - 10-page text paper
 - 60-second sound file
 - 480 by 640 image
- Data compression: storing data in a reduced-size form to save space/time
 - Lossless: data can be perfectly restored
 - Lossy: data cannot be perfectly restored

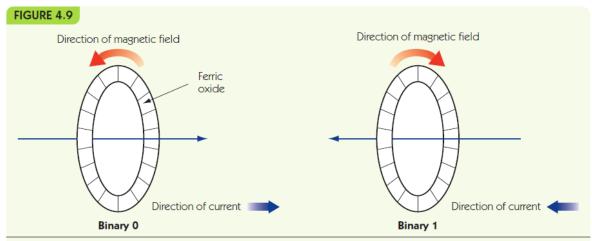
FIGURE 4.8		
Letter	4-bit Encoding	Variable Length Encoding
Α	0000	00
1	0001	10
Н	0010	010
W	0011	110
E	0100	0110
0	0101	0111
Μ	0110	11100
К	0111	11101
U	1000	11110
Ν	1001	111110
Р	1010	111110
L	1011	1111111
	(a)	(b)

21

Using variable-length code sets

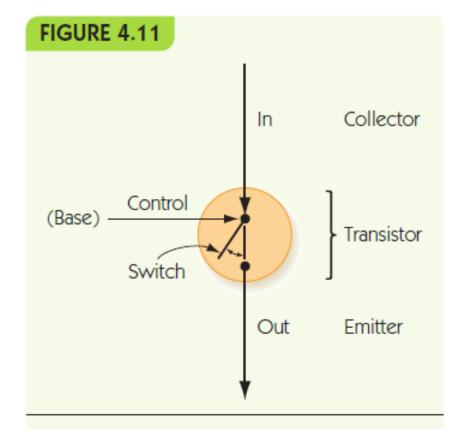
- (a) Fixed length
- (b) Variable length

- Computers use binary because "bistable" systems are reliable
 - current on/off
 - magnetic field left/right

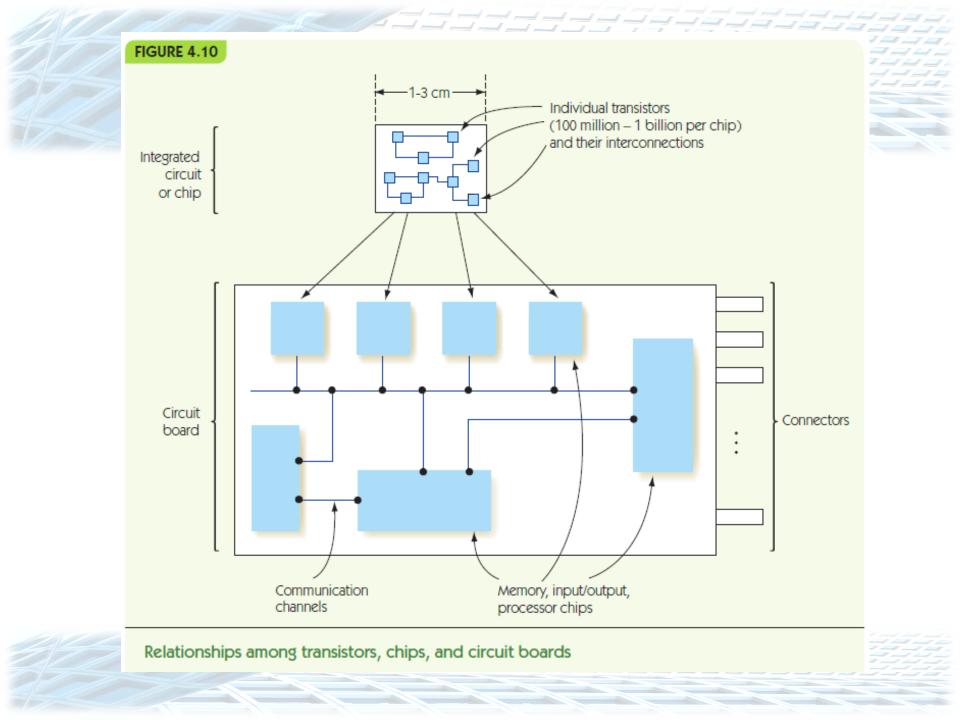


Using magnetic cores to represent binary values

- Transistors
 - Solid-state switches
 - Change on/off when given power on control line
 - Extremely small (billions per chip)
 - Enable computers that work with **gigabytes** of data



Simplified model of a transistor



Boolean Logic and Gates

- **Boolean logic:** rules for manipulating true/false
- Boolean expressions can be converted to circuits
- Hardware design/logic design pertains to the design and construction of new circuits
- Note that 1/0 of binary representations maps to true/false of Boolean logic
- Boolean expressions: $x \le 35$, a = 12
- Boolean operators: (0 ≤ x) AND (x ≤ 35), (a = 12)
 OR (a = 13), NOT (a = 12)

 $(0 \le x) \bullet (x \le 35), (a = 12) + (a = 13), \sim (a = 12)$

Boolean Logic and Gates (continued)

- **Truth tables** lay out true/false values for Boolean expressions, for each possible true/false input
- Example: (a b) + (a ~b)

а	b	~b	(a ∙ b)	(a ∙ ~b)	(a ∙ b) + (a ∙ ~b)
true	true	false	true	false	true
true	false	true	false	true	true
false	true	false	false	false	false
false	false	true	false	false	false

ł	FIGURE 4.12				
Inputs			Output a AND b		
a b			(also written a · b)		
	False	False	False		
	False	True	False		
	True	False	False		
	True	True	True		
		-	•		

FIGURE 4.13					
Input	s	Output a OR b			
а	ь	(also written a + b)			
False	False	False			
False	True	True			
True	False	True			
True	True	True			

27

Truth table for the AND operation

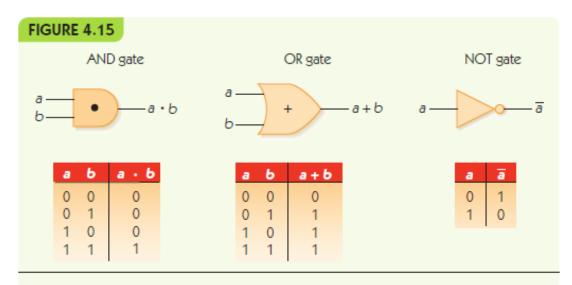
Truth table for the OR operation

FIG	FIGURE 4.14				
Input		Output NOT a			
	а	(also written \overline{a})			
	False	True			
	True	False			

Truth table for the NOT operation

Boolean Logic and Gates (continued)

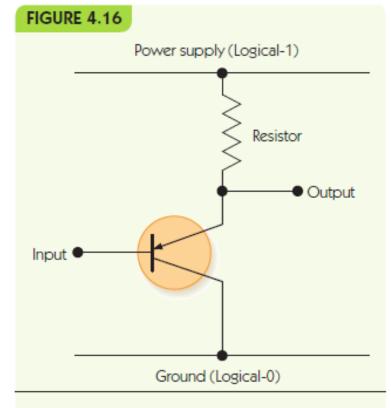
- Gate: an electronic device that operates on inputs to produce outputs
- Each gate corresponds to a Boolean operator



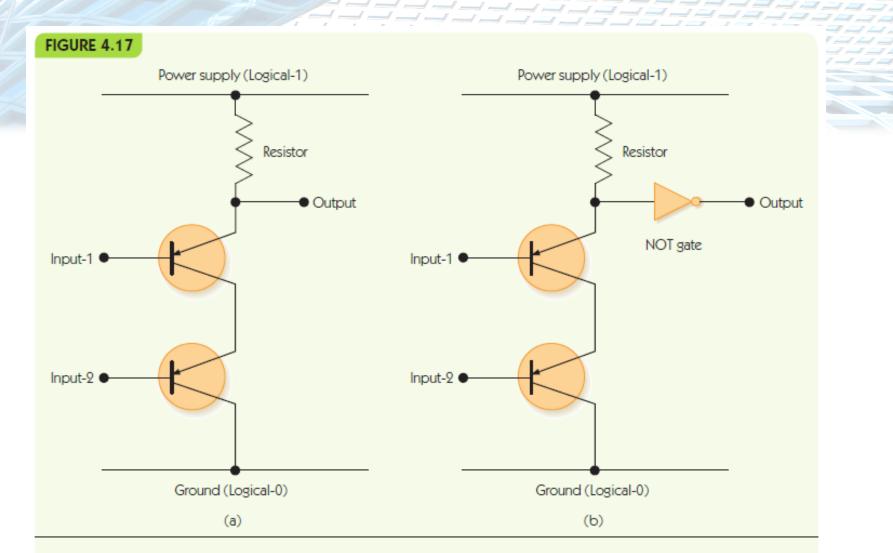
The three basic gates and their symbols

Boolean Logic and Gates (continued)

- Gates are built from transistors
- NOT gate: 1 transistor
- AND gate: 3 transistors
- OR gate: 3 transistors
- NAND and NOR: 2 transistors



Construction of a NOT gate

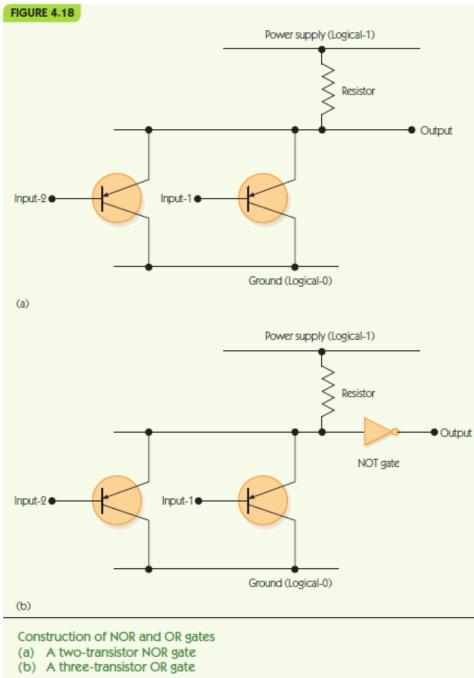


Construction of NAND and AND gates

- (a) A two-transistor NAND gate
- (b) A three-transistor AND gate

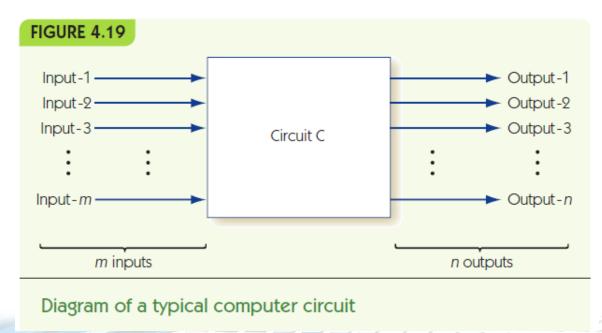
Invitation to Computer Science, 6th Edition

30



Building Computer Circuits

- **Circuit:** has input wires, contains gates connected by wires, and has output wires
- Outputs depend only on current inputs: no state



- To convert a circuit to a Boolean expression:
 - Start with output and work backwards
 - Find next gate back, convert to Boolean operator
 - Repeat for each input, filling in left and/or right side
- To convert a Boolean expression to a circuit:
 - Similar approach
- To build a circuit from desired outcomes:
 - Use standard circuit construction algorithm:
 - e.g., sum-of-products algorithm

Example from text

• Build truth table:

а	b	С	Output1	Output2
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Example from text

• Find true rows for Output1

1	а	b	С	Output1	Output2
	0	0	0	0	1
	0	0	1	0	0
	0	1	0	1	1
	0	1	1	0	1
	1	0	0	0	0
	1	0	1	0	0
	1	1	0	1	1
	1	1	1	0	0

Example from text

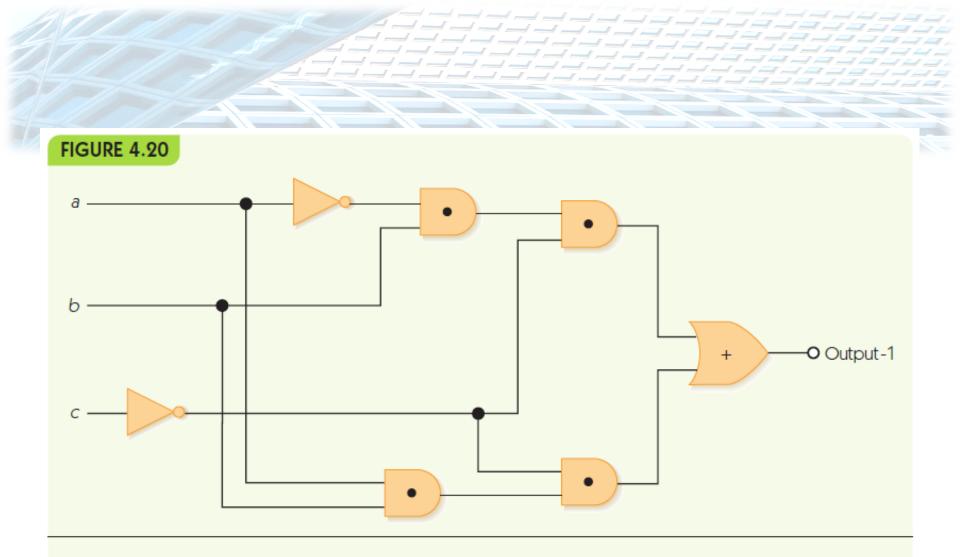
• For each true row, AND input sto make 1

- a = 1, b = 1, c = 0: (a • b • ~c)

• Combine row subexpressions with OR

-
$$(\sim a \cdot b \cdot \sim c) + (a \cdot b \cdot \sim c)$$

- Build circuit from expression
- (and repeat for other output)



Circuit diagram for the output labeled Output-1

Invitation to Computer Science, 6th Edition

37



FIGURE 4.21

- 1. Construct the truth table describing the behavior of the desired circuit
- 2. While there is still an output column in the truth table, do Steps 3 through 6
- Select an output column
- Subexpression construction using AND and NOT gates
- 5. Subexpression combination using OR gates
- 6. Circuit diagram production

7. Done

The sum-of-products circuit construction algorithm

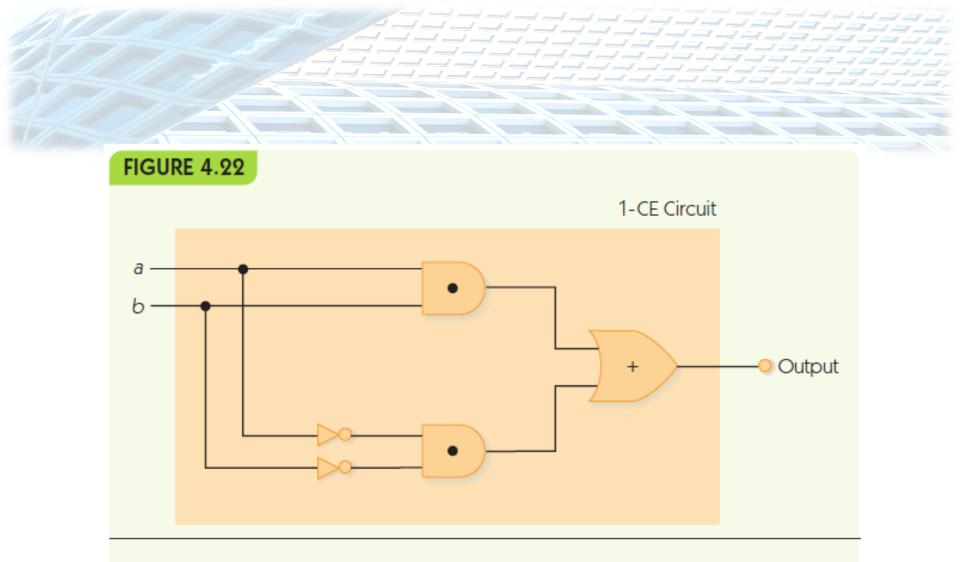
Compare-for-equality (CE) circuit

- Input is two unsigned binary numbers
- Output is 1 if inputs are identical, and 0 otherwise
- Start with one-bit version (1-CE) and build general version from that

- 1-CE circuit: compare two input bits for equality
- Truth table:

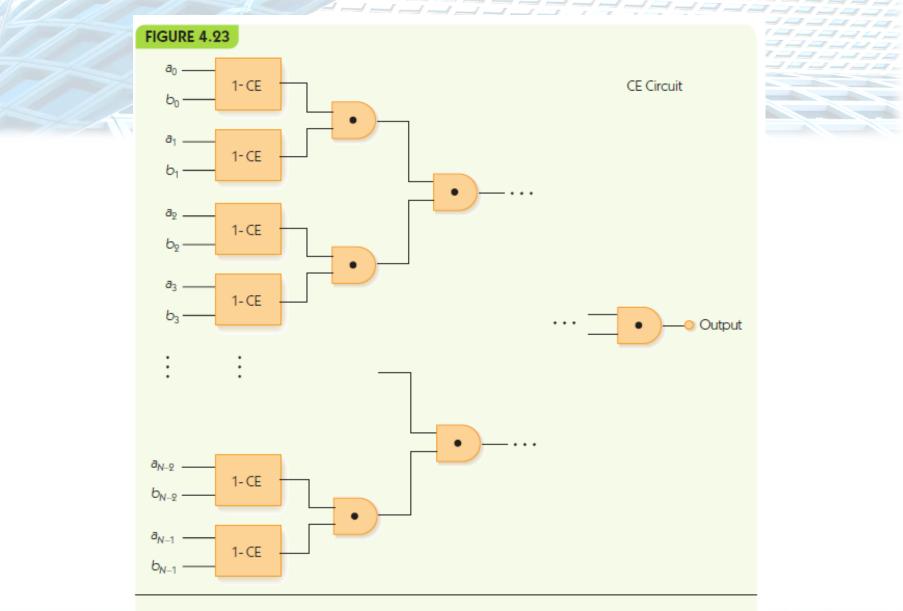
а	b	Output
0	0	1
0	1	0
1	0	0
1	1	1

Boolean expression: (a • b) + (~a • ~b)



One-bit compare-for-equality circuit

- N-bit CE circuit
- Input: a₀a₂...a_{n-1} and b₀b₂...b_{n-1}, where a_i and b_i are individual bits
- Pair up corresponding bits: a₀ with b₀, a₁ with b₁, etc.
- Run a 1-CE circuit on each pair
- AND the results



N-bit compare-for-equality circuit

Invitation to Computer Science, 6th Edition

43

Full adder circuit

- Input is two unsigned N-bit numbers
- Output is one unsigned N-bit number, the result of adding inputs together

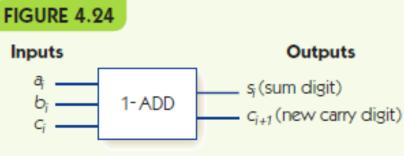
1

• Example:

				•	
	0	0	1	0	1
+	0	1	0	0	1
	0	1	1	1	0

• Start with one-bit adder (1-ADD)

Fic In



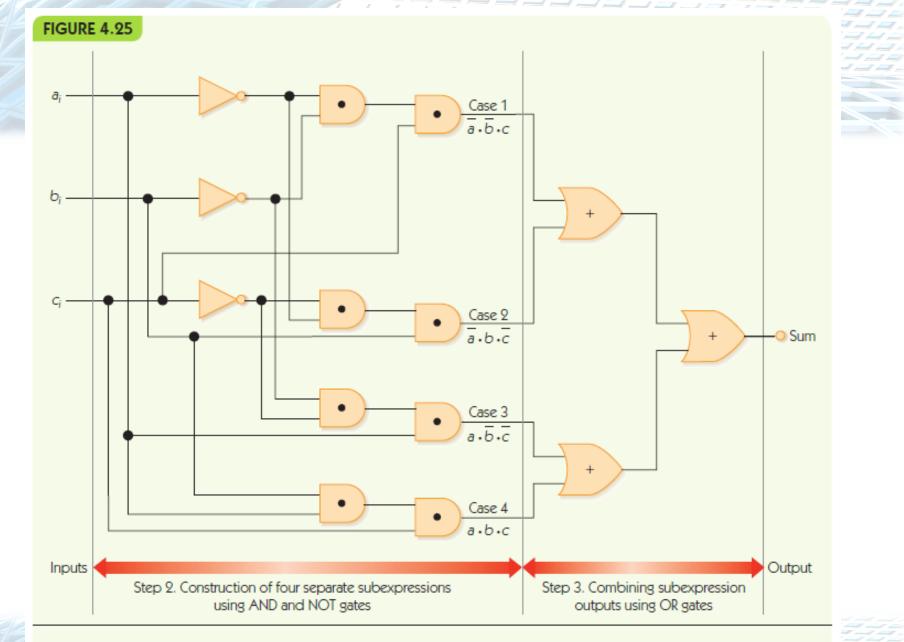
Inputs		Ou	Outputs	
a _i	b _i	c,	s _i	c _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
			•	

The 1-ADD circuit and truth table

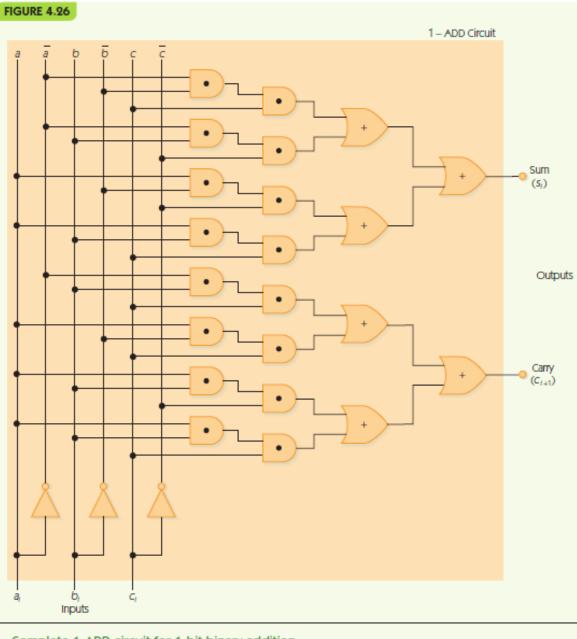
• Sum digit, s_i, has Boolean expression:

$$(\sim a_i \bullet \sim b_i \bullet c_i) + (\sim a_i \bullet b_i \bullet \sim c_i) + (a_i \bullet \sim b_i \bullet \sim c_i) + (a_i \bullet b_i \bullet c_i)$$

Carry digit, c_{i+1}, has Boolean expression:
(~a_i • b_i • c_i) + (a_i • ~b_i • c_i) +
(a_i • b_i • ~c_i) + (a_i • b_i • c_i)



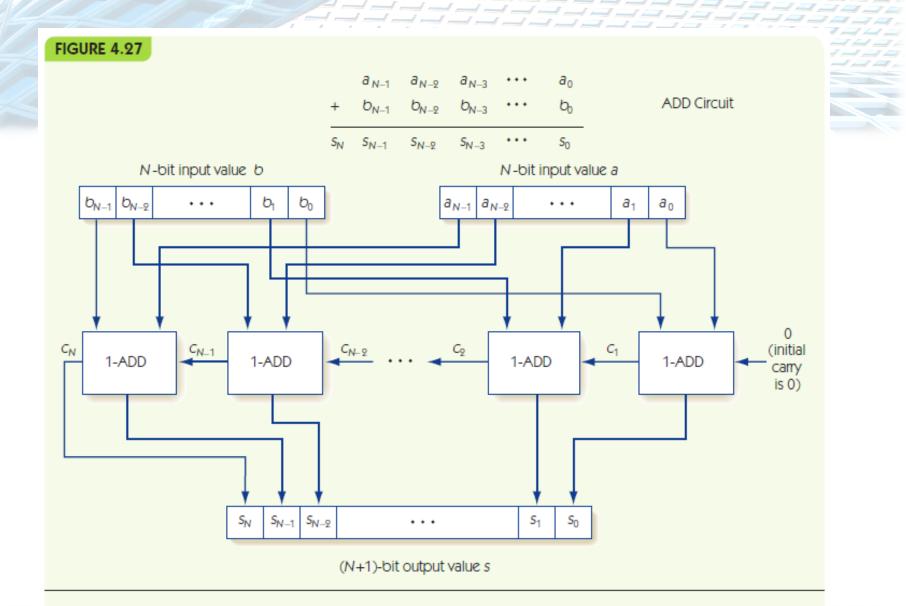
Sum output for the 1-ADD circuit



Complete 1-ADD circuit for 1-bit binary addition

7 🖃 🖃 🖃 🖃 🔤

- N-bit adder circuit
- Input: a₀a₂...a_{n-1} and b₀b₂...b_{n-1}, where a_i and b_i are individual bits
- a₀ and b₀ are least significant digits: ones place
- Pair up corresponding bits: a₀ with b₀, a₁ with b₁, etc.
- Run 1-ADD on a_0 and b_0 , with fixed carry in $c_0 = 0$
- Feed carry out c₁ to next 1-ADD and repeat

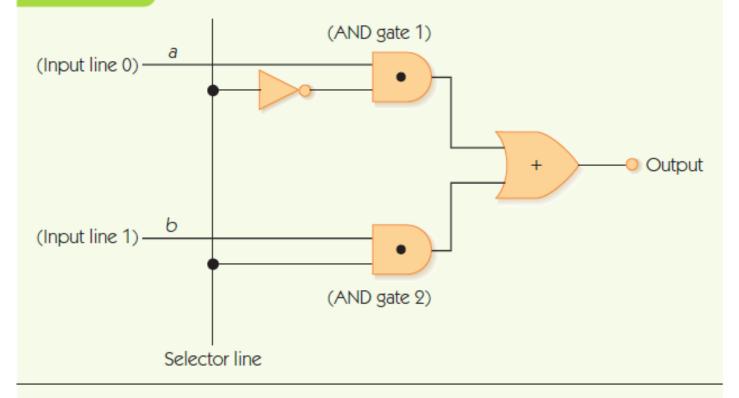


The complete full adder ADD circuit

Control Circuits

- **Control circuits** make decisions, determine order of operations, select data values
- Multiplexor selects one from among many inputs
 - -2^{N} input lines
 - N selector lines
 - 1 output line
- Each input line corresponds to a unique pattern on selector lines
- That input value is passed to output

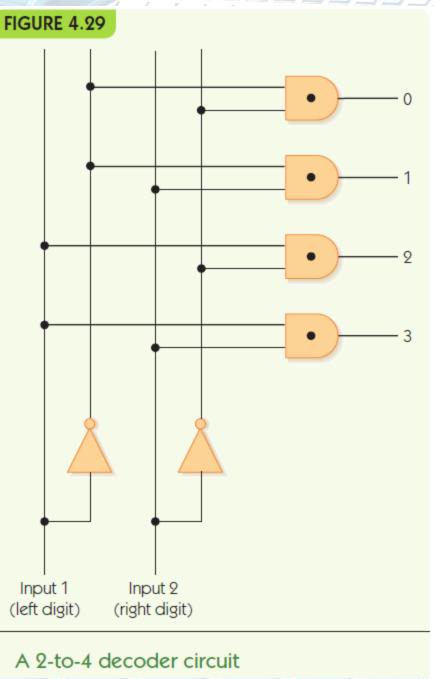
FIGURE 4.28



A two-input multiplexor circuit

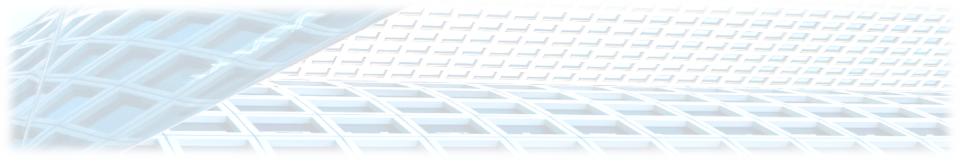
Control Circuits (continued)

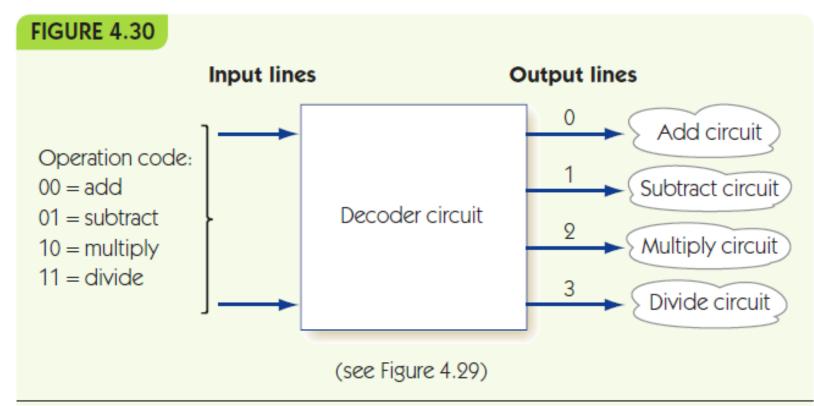
- Decoder sends a signal out only one output, chosen by its input
 - N input lines
 - -2^{N} output lines
- Each output line corresponds to a unique pattern on input lines
- Only the chosen output line produces 1, all others output 0



Control Circuits (continued)

- Decoder circuit uses
 - To select a single arithmetic instruction, given a code for that instruction
 - Code activates one output line, that line activates corresponding arithmetic circuit
- Multiplexor circuit uses
 - To choose one data value from among a set, based on selector pattern
 - Many data values flow into the multiplexor, only the selected one comes out

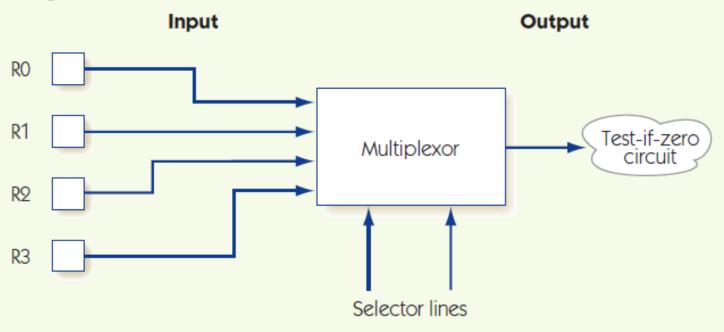




Example of the use of a decoder circuit

FIGURE 4.31

Registers



Example of the use of a multiplexor circuit

Summary

- Computers use binary representations because they maximize reliability for electronic systems
- Many kinds of data may be represented at least in an approximate digital form using binary values
- Boolean logic describes how to build and manipulate expressions that are true/false
- We can build logic gates that act like Boolean operators using transistors
- Circuits may be built from logic gates: circuits correspond to Boolean expressions

Summary

- Sum-of-products is a circuit design algorithm: takes a specification and ends with a circuit
- We can build circuits for basic algorithmic tasks:
 - Comparisons (compare-for-equality circuit)
 - Arithmetic (adder circuit)
 - Control (multiplexor and decoder circuits)