
INVITATION TO
Computer Science 1

Chapter 3
The Efficiency of Algorithms

Objectives

After studying this chapter, students will be able to:
•  Describe algorithm attributes and why they are

important
•  Explain the purpose of efficiency analysis and apply it

to new algorithms to determine the order of magnitude
of their time efficiencies

•  Describe, illustrate, and use the algorithms from the
chapter, including: sequential and binary search,
selection sort, data cleanup algorithms, pattern
matching

Invitation to Computer Science, 6th Edition 2

Objectives (continued)

After studying this chapter, students will be able to:
•  Explain which orders of magnitude grow faster or

slower than others
•  Describe what an intractable problem is, giving one or

more examples, and the purpose of approximation
algorithms that partially solve them

Invitation to Computer Science, 6th Edition 3

 Introduction

•  Many solutions to any given problem
•  How can we judge and compare algorithms?
•  Metaphor: Purchasing a car

–  ease of handling
–  style
–  fuel efficiency

•  Evaluating an algorithm
–  ease of understanding
–  elegance
–  time/space efficiency

Invitation to Computer Science, 6th Edition 4

Attributes of Algorithms

•  Attributes of interest: correctness, ease of
understanding, elegance, and efficiency

•  Correctness:
–  Is the problem specified correctly?
–  Does the algorithm produce the correct result?

•  Example: pattern matching
–  Problem spec: “Given pattern p and text t, determine

the location, if any, of pattern p occurring in text t”
–  Algorithm correct: does it always work?

Invitation to Computer Science, 6th Edition 5

Attributes of Algorithms (continued)

•  Ease of understanding, useful for:
–  checking correctness
–  program maintenance

•  Elegance: using a clever or non-obvious approach
–  Example: Gauss’ summing of 1 + 2 + … + 100

•  Attributes may conflict: Elegance often conflicts
with ease of understanding

•  Attributes may reinforce each other: Ease of
understanding supports correctness

Invitation to Computer Science, 6th Edition 6

Attributes of Algorithms (continued)

•  Efficiency: an algorithm’s use of time and space
resources
–  Timing an algorithm is not always useful
–  Confounding factors: machine speed, size of input

•  Benchmarking: timing an algorithm on standard
data sets
–  Testing hardware and operating system, etc.
–  Testing real-world performance limits

Invitation to Computer Science, 6th Edition 7

Measuring Efficiency
Sequential Search

•  Analysis of algorithms: the study of the efficiency
of algorithms

•  Searching: the task of finding a specific value in a
list of values, or deciding it is not there

•  Sequential search algorithm (from Ch. 2):

“Given a target value and a random list of values, find

the location of the target in the list, if it occurs, by
checking each value in the list in turn”

Invitation to Computer Science, 6th Edition 8

Invitation to Computer Science, 6th Edition 9

Measuring Efficiency
Sequential Search (continued)

•  Central unit of work, operations most important for
the task, and occurring frequently

•  In sequential search, comparison of target NAME
to each name in the list

•  Given a big input list:
–  Best case is smallest amount of work algorithm does
–  Worst case is greatest amount of work algorithm

does
–  Average case depends on likelihood of different

scenarios occurring

Invitation to Computer Science, 6th Edition 10

Measuring Efficiency
Sequential Search (continued)

•  Best case: target found with the first comparison
•  Worst case: target never found or last value
•  Average case: if each value is equally likely to be

searched, work done varies from 1 to n, averages
to n/2

Invitation to Computer Science, 6th Edition 11

Measuring Efficiency
Order of Magnitude—Order n

•  Order of magnitude n, Θ(n): the set of functions
that grow in a linear fashion

Invitation to Computer Science, 6th Edition 12

Measuring Efficiency
Order of Magnitude—Order n (continued)

•  Change in growth as n increases is constant size

Invitation to Computer Science, 6th Edition 13

Measuring Efficiency
Selection Sort

•  Sorting: The task of putting a list of values into
numeric or alphabetical order

•  Key idea:
–  Pass repeatedly over the unsorted portion of the list
–  Each pass select the largest remaining value
–  Move that value to the end of the unsorted values

Invitation to Computer Science, 6th Edition 14

Invitation to Computer Science, 6th Edition 15

Measuring Efficiency
Selection Sort (continued)

Example: Selection Sort on [5, 1, 3, 9, 4]
•  Pass 1:

–  Select 9 as the largest in the whole list
–  Swap with 4 to place in last slot
–  [5, 1, 3, 4, 9]

•  Pass 2:
–  Select 5 as the largest in the first four values
–  Swap with 4 to place in last remaining slot
–  [4, 1, 3, 5, 9]

 Invitation to Computer Science, 6th Edition 16

Measuring Efficiency
Selection Sort (continued)

Example: Selection Sort on [5, 1, 3, 9, 4]
•  Pass 3:

–  Select 4 as the largest in the first three
–  Swap with 3 to place in last slot
–  [3, 1, 4, 5, 9]

•  Pass 4:
–  Select 3 as the largest in the first two values
–  Swap with 1 to place in last remaining slot
–  [1, 3, 4, 5, 9]

 Invitation to Computer Science, 6th Edition 17

Measuring Efficiency
Selection Sort (continued)

•  Central unit of work: hidden in “find largest” step
•  Work done to find largest changes as unsorted

portion shrinks
•  (n-1) + (n-2) + … + 2 + 1 = n (n-1) / 2

Invitation to Computer Science, 6th Edition 18

Measuring Efficiency
Order of Magnitude—Order n2

Order n2, Θ(n2):
the set of functions
whose growth is on the
order of n2

Invitation to Computer Science, 6th Edition 19

Measuring Efficiency
Order of Magnitude—Order n2 (continued)

 Eventually, every function with order n2 has
greater values than any function with order n

Invitation to Computer Science, 6th Edition 21

Analysis of Algorithms
Data Cleanup Algorithms

 “Given a collection of age data, where erroneous
zeros occur, find and remove all the zeros from the
data, reporting the number of legitimate age values
that remain”

•  Illustrates multiple solutions to a single problem
•  Use of analysis to compare algorithms

Invitation to Computer Science, 6th Edition 22

Analysis of Algorithms
Data Cleanup Algorithms (continued)

•  Shuffle-left algorithm:
–  Search for zeros from left to right
–  When a zero is found, shift all values to its right one

cell to the left IS THIS RIGHT?
•  Example: [55, 0, 32, 19, 0, 27]

–  Finds 0 at position 2: [55, 32, 19, 0, 27, 27]
–  Finds 0 at position 4: [55, 32, 19, 27, 27, 27]

Invitation to Computer Science, 6th Edition 23

Invitation to Computer Science, 6th Edition 24

Analysis of Algorithms
Data Cleanup Algorithms (continued)

•  Analysis of shuffle-left for time efficiency
–  Count comparisons looking for zero AND

movements of values
–  Best case: no zeros occur, check each value and

nothing more: Θ(n)
–  Worst case: every value is a zero, move n-1 values,

then n-2 values, etc.: Θ(n2)
•  Analysis of shuffle-left for space efficiency

–  Uses no significant space beyond input

Invitation to Computer Science, 6th Edition 25

Analysis of Algorithms
Data Cleanup Algorithms (continued)

•  Copy-over algorithm:
–  Create a second, initially empty, list
–  Look at each value in the original
–  If it is non-zero, copy it to the second list

•  Example: [55, 0, 32, 19, 0, 27]
1. answer = [55] 4. answer = [55, 32, 19]
2. answer = [55] 5. answer = [55, 32, 19]
3. answer = [55, 32] 6. answer = [55, 32, 19, 27]

Invitation to Computer Science, 6th Edition 26

Invitation to Computer Science, 6th Edition 27

Analysis of Algorithms
Data Cleanup Algorithms (continued)

•  Time efficiency for copy-over
–  Best case: all zeros, checks each value but doesn’t

copy it: Θ(n)
–  Worst case: no zeros, checks each value and copies

it: Θ(n)
•  Space efficiency for copy-over

–  Best case: all zeros, uses no extra space
–  Worst case: no zeros, uses n extra spaces

Invitation to Computer Science, 6th Edition 28

Analysis of Algorithms
Data Cleanup Algorithms (continued)

•  Converging-pointers algorithm:
–  Keep track of two pointers at the data
–  Left pointer moves left to right and stops when it

sees a zero value
–  Right pointer stays put until a zero is found
–  Then its value is copied on top of the zero, and it

moves one cell to the left
–  Stop when the left crosses the right

Invitation to Computer Science, 6th Edition 29

Invitation to Computer Science, 6th Edition 30

Analysis of Algorithms
Data Cleanup Algorithms (continued)

Example: [55, 0, 32, 19, 0, 27]
[55, 0, 32, 19, 0, 27]
 L R
[55, 0, 32, 19, 0, 27]
 L R
[55, 27, 32, 19, 0, 27]
 L R
[55, 27, 32, 19, 0, 27]
 LR

Invitation to Computer Science, 6th Edition 31

Analysis of Algorithms
Data Cleanup Algorithms (continued)

•  Time efficiency for converging-pointers
–  Best case: no zeros, left pointer just moves across to

pass the right pointers, examines each value: Θ(n)
–  Worst case: all zeros, examines each value and

copies a value over it, right pointer moves left
towards left pointer: Θ(n)

•  Space efficiency for converging-pointers
–  No significant extra space needed

Invitation to Computer Science, 6th Edition 32

Invitation to Computer Science, 6th Edition 33

Analysis of Algorithms
Binary Search

 Binary Search Algorithm:

 “Given a target value and an ordered list of values,
find the location of the target in the list, if it occurs,
by starting in the middle and splitting the range in
two with each comparison”

Invitation to Computer Science, 6th Edition 34

Invitation to Computer Science, 6th Edition 35

Analysis of Algorithms
Binary Search (continued)

Example: target = 10, list = [1, 4, 5, 7, 10, 12, 14, 22]
mid = 7, eliminate lower half:

 [1, 4, 5, 7, 10, 12, 14, 22]
mid = 12, eliminate upper half:

 [1, 4, 5, 7, 10, 12, 14, 22]
mid = 10, value found!

Invitation to Computer Science, 6th Edition 36

Analysis of Algorithms
Binary Search (continued)

•  Central unit of work: comparisons against target
•  Best case efficiency:

–  Value happens to be the first middle value: 1
comparison

•  Worst case efficiency:
–  Value does not appear, repeats as many times as

we can divide the list before running out of values:
Θ(lg n)

Invitation to Computer Science, 6th Edition 37

Analysis of Algorithms
Binary Search (continued)

•  Order of magnitude lg n, Θ(lg n), grows very
slowly

38

Analysis of Algorithms
Pattern Matching

•  Algorithm from chapter 2
•  Best case: when first symbol of pattern does not

appear in text
•  Worst case: when all but last symbol of pattern

make up the text

Invitation to Computer Science, 6th Edition 39

40

Analysis of Algorithms
Pattern Matching (continued)

•  Best case example:
–  pattern = “xyz” text = “aaaaaaaaaaaaaaa”
–  At each step, compare ‘x’ to ‘a’ and then move on
–  Θ(n) comparisons

•  Worst case example:
–  pattern = “aab” text = “aaaaaaaaaaaaaaa”
–  At each step, compare m symbols from pattern

against text before moving on
–  Θ(mn) comparisons

Invitation to Computer Science, 6th Edition 41

Invitation to Computer Science, 6th Edition 42

When Things Get Out of Hand

•  Polynomially bounded: an algorithm that does
work on the order of Θ(nk)

•  Most common problems are polynomially bounded
•  Hamiltonian circuit is NOT

–  Given a graph, find a path that passes through each
vertex exactly once and returns to its starting point

Invitation to Computer Science, 6th Edition 43

Invitation to Computer Science, 6th Edition 44

When Things Get Out of Hand
(continued)

•  Possible paths in the graph are paths through a
tree of choices

•  Most simple case has exactly two choices per
vertex

•  Number of paths to examine = number of leaves in
the tree

•  Height of the tree = n+1 (n is the number of vertices
in the graph)

•  Number of leaves = 2n

Invitation to Computer Science, 6th Edition 45

When Things Get Out of Hand
(continued)

•  Exponential algorithm: an algorithm whose order
of growth is Θ(kn)

•  Intractable: problems with no polynomially-
bounded solutions
–  Hamiltonian circuit
–  Traveling Salesperson
–  Bin packing
–  Chess

Invitation to Computer Science, 6th Edition 46

47

Invitation to Computer Science, 6th Edition 48

Invitation to Computer Science, 6th Edition 49

When Things Get Out of Hand
(continued)

•  Approximation algorithms: algorithms that
partially solve, or provide sub-optimal solutions to,
intractable problems

•  Example: bin packing
•  For each box to be packed

–  check each current bin
•  if new box fits in the bin, place it there

–  if no bin can hold the new box, add a new bin

Invitation to Computer Science, 6th Edition 50

Summary

•  We must evaluate the quality of algorithms, and
compare competing algorithms to each other

•  Attributes: correctness, efficiency, elegance, and
ease of understanding

•  Compare competing algorithms for time and space
efficiency (time/space tradeoffs are common)

•  Orders of magnitude capture work as a function of
input size: Θ(lg n), Θ(n), Θ(n2), Θ(2n)

•  Problems with only exponential algorithms are
intractable

Invitation to Computer Science, 6th Edition 51

