Ci

Chapter 2
The Algorithmic Foundations of

/Coputer S

INVITATION TO

Computer Science



Objectives

After studying this chapter, students will be able to:

« Explain the benefits of pseudocode over natural
language or a programming language

« Represent algorithms using pseudocode

 Identify algorithm statements as sequential, conditional,
or iterative

» Define abstraction and top-down design, and explain
their use in breaking down complex problems

Invitation to Computer Science, 6th Edition 2



Objectives (continued)

After studying this chapter, students will be able to:
« lllustrate the operation of sample algorithms

— multiplication by repeated addition

— sequential search of a collection of values

— finding the maximum element in a collection

— finding a pattern string in a larger piece of text

Invitation to Computer Science, 6th Edition



Introduction

 Algorithms for everyday may not be suitable for
computers to perform (as in Chapter 1)

 Algorithmic problem solving focuses on algorithms
suitable for computers

« Pseudocode is a tool for designing algorithms

* This chapter will use a set of problems to illustrate
algorithmic problem solving

Invitation to Computer Science, 6th Edition



Representing Algorithms

Pseudocode is used to design algorithms
Natural language is:

— expressive, easy to use

— verbose, unstructured, and ambiguous
Programming languages are:

— structured, designed for computers

— grammatically fussy, cryptic

Pseudocode lies somewhere between these two

Invitation to Computer Science, 6th Edition



FIGURE 2.1

Initially, set the value of the variable carry to 0 and the value of the variable | to 0. When
these Initializations have been completed, begin looping as long as the value of the
variable i is less than or equal to (m — 1). First, add together the values of the two digits
a and b, and the current value of the carry digit to get the result called c.. Now check
the value of ¢ to see whether it is greater than or equal to 10. If ¢ is greater than or equal
to 10, then reset the value of carry to 1 and reduce the value of ¢, by 10; otherwise, set
the value of carry to 0. When you are finished with that operation, add 1 to i and begin
the loop all over again. When the loop has completed execution, set the leftmost digit
of the result ¢ _ to the value of carry and print out the final result, which consists of the
digitsc_c . ... c,. After printing the result, the algorithm is finished, and it terminates.

The addition algorithm of Figure 1.2 expressed in natural language

Invitation to Computer Science, 6th Edition 6



FIGURE 2.2
{

Scanner inp = new Scanner(System.in);
int i, m, carry;
int[] a = new int[100];
int[] b = new int[100];
int[] ¢ = new int[100];
m = inp.nextInt();
for (int j = 0;j <= m-1;j++) {
a[j] = inp.nextInt();
b[j] = inp.nextInt();
}
carry = 0;
i=0;
while (1 < m) {
c[i] = a[i] + b[i] + carry;
if (c[i] >= 10)

The beginning of the addition algorithm of Figure 1.2 expressed in a
high-level programming language

Invitation to Computer Science, 6th Edition



Representing Algorithms (continued)

« Sequential operations perform a single task
— Computation: a single numeric calculation
— Input: gets data values from outside the algorithm
— Output: sends data values to the outside world

« A variable is a named location to hold a value

* A sequential algorithm is made up only of
sequential operations

« Example: computing average miles per gallon

Invitation to Computer Science, 6th Edition



FIGURE 2.3

Step
1

O A~ W N

Operation

Get values for gallons used, starting mileage, ending mileage

Set value of distance driven to (ending mileage — starting mileage)

Set value of average miles per gallon to (distance driven <+ gallons used)
Print the value of average miles per gallon

Stop

Algorithm for computing average miles per gallon (version 1)

Invitation to Computer Science, 6th Edition



Representing Algorithms (continued)

« Control operation: changes the normal flow of
control

« Conditional statement: asks a question and
selects among alternative options

1. Evaluate the true/false condition

2. If the condition is true, then do the first set of
operations and skip the second set

3. If the condition is false, skip the first set of operations
and do the second set

« Example: check for good or bad gas mileage

Invitation to Computer Science, 6th Edition 10



m m 1__/‘_(_1:2_’.‘_.;—'—;——!'4.:4'77 .—{_:r_.:
it else pseudocode R T
——————— - - o . ‘ e S —-




- FIGURE 2.5
Step Operation

1 Get values for gallons used, starting mileage, ending mileage

Q Set value of distance driven to (ending mileage — starting mileage)

3 Set value of average miles per gallon to (distance driven =+ gallons used)
4 Print the value of average miles per gallon

5 If average miles per gallon is greater than 25.0 then
6 Print the message “You are getting good gas mileage’

Else
7 Print the message “You are NOT getting good gas mileage’
8 Stop

Second version of the average miles per gallon algorithm

Invitation to Computer Science, 6th Edition =



Representing Algorithms (continued)

« |teration: an operation that causes looping,
repeating a block of instructions

 While statement repeats while a condition remains
true

— continuation condition: a test to see if while loop
should continue

— loop body: instructions to perform repeatedly
 Example: repeated mileage calculations

Invitation to Computer Science, 6th Edition 13



—_—
—f —— —

——
— = ~ -

——

Execution of the while loop

e e e
—_— — il .



FIGURE 2.7

Step Operation
1 response = Yes

9 While (response = Yes) do Steps 3 through 11
3 Get values for gallons used, starting mileage, ending mileage
4 Set value of distance driven to (ending mileage — starting mileage)
5 Set value of average miles per gallon to (distance driven + gallons used)
6 Print the value of average miles per gallon
7 If average miles per gallon > 25.0 then
8 Print the message “You are getting good gas mileage’
Else
9 Print the message “You are NOT getting good gas mileage’
10 Print the message ‘Do you want to do this again? Enter Yes or No’
11 Get a new value for response from the user
12 Stop

Third version of the average miles per gallon algorithm

Invitation to Computer Science, 6th Edition 5



Representing Algorithms (continued)

 Do/while, alternate iterative operation
— continuation condition appears at the end
— loop body always performed at least onc

 Primitive operations: sequential, conditional, and
iterative are all that is needed

Invitation to Computer Science, 6th Edition 16



—t ed G i o o
il el i e P == S eyt

B

— ,T — N ——— —

N - : : N .

—_— = =

-

— S e ——— e




FIGURE 2.9
Computation:
Set the value of “variable” to “arithmetic expression”
Input/Output:
Get a value for “vanable”, “variable”...
Print the value of “variable”, “vanable”, ...
Print the message ‘message’
Conditional:
If “a true/false condition™ is true then
first set of algorithmic operations
Else
second set of algonthmic operations
Iterative:
While (“a true/false condition™) do Step i through Step |
Step i: opaabon

Step j: operation
While (“a true/false condition™) do
operation

While ("a true/false condition™)

Summary of pseudocode language instructions



Examples of Algorithmic Problem Solving
Example 1: Go Forth and Multiply

“Given two nonnegative integer values, a=0, b =2 0,
compute and output the product (a x b) using the
technique of repeated addition. That is, determine
the value of the suma+a+a+...+ a(btimes).”

Invitation to Computer Science, 6th Edition 19



Examples of Algorithmic Problem Solving
Example 1: Go Forth and Multiply (continued)

* Get input values

— Get values foraand b
« Compute the answer

— Loop b times, adding each time*
* Qutput the result

— Print the final value*

* steps need elaboration

Invitation to Computer Science, 6th Edition

20



Examples of Algorithmic Problem Solving
Example 1: Go Forth and Multiply (continued)

* Loop b times, adding each time
— Set the value of count to O
— While (count < b) do
e ... the rest of the loop*
« Set the value of count to count + 1

— End of loop

* steps need elaboration

Invitation to Computer Science, 6th Edition

21



Examples of Algorithmic Problem Solving
Example 1: Go Forth and Multiply (continued)

* Loop b times, adding each time
— Set the value of countto 0O
— Set the value of product to O
— While (count < b) do
« Set the value of product to (product + a)
« Set the value of count to count + 1

— End of loop
* QOutput the result
— Print the value of product

Invitation to Computer Science, 6th Edition

22



FIGURE 2.10

Get values foraand b
If (either a = 0 or b = 0) then
Set the value of product to 0
Else
Set the value of count to 0
Set the value of product to 0
While (count < b) do
Set the value of product to (product + a)
Set the value of count to (count + 1)
End of loop
Print the value of product
Stop

Algorithm for multiplication of nonnegative values via repeated
addition

Invitation to Computer Science, 6th Edition

23



Examples of Algorithmic Problem Solving
Example 2: Looking, Looking, Looking

*“Assume that we have a list of 10,000 names that

we define as N, Ny, N5, . .., Nyj 000, @long with the
10,000 telephone numbers of those individuals,
denotedas T, T,, T3, ..., T;5000- TO simplify the

problem, we initially assume that all names in the
book are unique and that the names need not be in
alphabetical order.”

Invitation to Computer Science, 6th Edition 24



Examples of Algorithmic Problem Solving
Example 2: Looking, Looking, Looking (continued)

* Three versions here illustrate algorithm
discovery, working toward a correct, efficient
solution

— A sequential algorithm (no loops or conditionals)
— An incomplete iterative algorithm
— A correct algorithm

Invitation to Computer Science, 6th Edition 25



FIGURE 2.11

Step Operation

Get values for NAME, N,, ..., N, andT, ..., T
If NAME = N, then print the value of T. |

If NAME = N, then print the value of T,

If NAME = N, then print the value of T,

&~ W N -

10,000 If NAME = b then print the value of -
10,001 If NAME = N, . then print the value of T,
10,002 Stop

0,000

First attempt at designing a sequential search algorithm

Invitation to Computer Science, 6th Edition



FIGURE 2.12

Step Operation
Get values for NAME, N,, ..., Ny, ., and T, ..., T, oo
Set the value of i to 1 and set the value of Found to NO
While (Found = NO) do Steps 4 through 7
If NAME is equal to the ith name on the list N. then
Print the telephone number of that person, T.
Set the value of Found to YES
Else (NAME is not equal to N

Add 1 to the value of i

o OB W N -

Stop

Second attempt at designing a sequential search algorithm

Invitation to Computer Science, 6th Edition



FIGURE 2.13

Step Operation

1 Get values for NAME, N,, ... and T, ...

10000’ 0000

% Set the value of i to 1 and set the value of Found to NO
3 While both (Found = NO) and (i < 10,000) do Steps 4 through 7
4 If NAME is equal to the ith name on the list N. then
5 Print the telephone number of that person, T.
6 Set the value of Found to YES
Else (NAME is not equal to N.)
7 Add 1 to the value of i
8 If (Found = NO) then
9 Print the message ‘Sorry, this name is not in the directory’

10 Stop

The sequential search algorithm

Invitation to Computer Science, 6th Edition

28



Examples of Algorithmic Problem Solving
Example 3: Big, Bigger, Biggest

* A "building-block™ algorithm used in many libraries

* Library: A collection of pre-defined useful
algorithms

“Given a value n 2 1 and a list containing exactly n
unique numbers called A,, A,, . .., A,, find and
print out both the largest value in the list and the
position in the list where that largest value
occurred.”

Invitation to Computer Science, 6th Edition 29



- FIGURE 2.14

Get a value for n, the size of the list
Getvaluesfor A, A,, ..., A , the list to be searched
Set the value of largest so farto A,
Set the value of location to 1
Set the value of ito 2
While (i < n)do
If A. > largest so far then
Set largest so farto A,
Set locationto i
Add 1 to the value of i
End of the loop
Print out the values of largest so far and location
Stop

Algorithm to find the largest value in a list

Invitation to Computer Science, 6th Edition



Examples of Algorithmic Problem Solving
Example 4: Meeting Your Match

» Pattern-matching: common across many
applications

— word processor search, web search, image analysis,
human genome project

“You will be given some text composed of n characters that will be
referredtoas T, T, ... T,. You will also be given a pattern of m
characters, m < n, that will be represented as P, P, ... P,.. The
algorithm must locate every occurrence of the given pattern within
the text. The output of the algorithm is the location in the text
where each match occurred.”

Invitation to Computer Science, 6th Edition 31



Examples of Algorithmic Problem Solving
Example 4: Meeting Your Match (continued)

* Algorithm has two parts:

1. Sliding the pattern along the text, aligning it with
each position in turn

2. Given a particular alignment, determine if there is a
match at that location

« Solve parts separately and use

— Abstraction, focus on high level, not details

— Top-down design, start with big picture, gradually
elaborate parts

Invitation to Computer Science, 6th Edition 32



- FIGURE 2.15

Get values for nand m, the size of the text and the pattem, respectively
Get values for boththe text T, T, ... T_and the pattem P, P, ... P_
Set k, the starting location for the attempted match, to 1
Keep going until we have fallen off the end of the text
Attempt to match every character in the pattern beginning at
position k of the text (this is Step 1 from the previous page)
If there was a match then
Print the value of k, the starting location of the match

Add 1 to k, which slides the pattern forward one position (this is Step 2)
End of the loop

Stop

First draft of the pattern-matching algorithm

Invitation to Computer Science, 6th Edition 33



FIGURE 2.16

Get values for n and m, the size of the text and the pattem, respectively
Get values for boththe text T, T, ... T_and the pattem P, P, ... P_
Set k, the starting location for the attempted match, to 1
While (k<(n— m+ 1))do
Set the value of i to 1
Set the value of Mismatch to NO
While both (i € m) and (Mismatch = NO) do
If P, iy then
Set Mismatch to YES
Else
Increment i by 1 (to move to the next character)
End of the loop
If Mismatch = NO then
Print the message ‘There is a match at position’
Print the value of k
Increment k by 1
End of the loop
Stop, we are finished

Final draft of the pattern-matching algorithm

Invitation to Computer Science, 6th Edition

34



Summary

« Pseudocode is used for algorithm design: structured
like code, but allows English and math phrasing and
notation

* Pseudocode is made up of: sequential, conditional, and
iterative operations

 Algorithmic problem solving involves:
— Step-by-step development of algorithm pieces

— Use of abstraction, and top-down design

Invitation to Computer Science, 6th Edition 35



