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Object Detection With Deep Learning: A Review

Zhong-Qiu Zhao

Abstract—Due to object detection’s close relationship with
video analysis and image understanding, it has attracted much
research attention in recent years. Traditional object detection
methods are built on handcrafted features and shallow trainable
architectures. Their performance easily stagnates by construct-
ing complex ensembles that combine multiple low-level image
features with high-level context from object detectors and scene
classifiers. With the rapid development in deep learning, more
powerful tools, which are able to learn semantic, high-level,
deeper features, are introduced to address the problems existing
in traditional architectures. These models behave differently in
network architecture, training strategy, and optimization func-
tion. In this paper, we provide a review of deep learning-based
object detection frameworks. Our review begins with a brief
introduction on the history of deep learning and its representative
tool, namely, the convolutional neural network. Then, we focus
on typical generic object detection architectures along with some
modifications and useful tricks to improve detection performance
further. As distinct specific detection tasks exhibit different
characteristics, we also briefly survey several specific tasks,
including salient object detection, face detection, and pedestrian
detection. Experimental analyses are also provided to compare
various methods and draw some meaningful conclusions. Finally,
several promising directions and tasks are provided to serve as
guidelines for future work in both object detection and relevant
neural network-based learning systems.

Index Terms— Deep learning, neural network, object detection.

I. INTRODUCTION

O GAIN a complete image understanding, we should

not only concentrate on classifying different images but
also try to precisely estimate the concepts and locations
of objects contained in each image. This task is referred
as object detection [1], [S1], which usually consists of dif-
ferent subtasks such as face detection [2], [S2], pedestrian
detection [3], [S2], and skeleton detection [4], [S3]. As one of
the fundamental computer vision problems, object detection
is able to provide valuable information for semantic under-
standing of images and videos and is related to many applica-
tions, including image classification [5], [6], human behavior
analysis [7], [S4], face recognition [8], [S5], and autonomous
driving [9], [10]. Meanwhile, inheriting from neural networks
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and related learning systems, the progress in these fields
will develop neural network algorithms and will also have
great impacts on object detection techniques that can be
considered as learning systems [11]-[14], [S6]. However, due
to large variations in viewpoints, poses, occlusions, and light-
ing conditions, it is difficult to perfectly accomplish object
detection with an additional object localization task. Therefore,
much attention has been attracted to this field in recent
years [15]-[18].

The problem definition of object detection is to determine
where objects are located in a given image (object localization)
and which category each object belongs to (object classifica-
tion). Therefore, the pipeline of traditional object detection
models can be mainly divided into three stages: informative
region selection, feature extraction, and classification.

A. Informative Region Selection

As different objects may appear in any positions of the
image and have different aspect ratios or sizes, it is a natural
choice to scan the whole image with a multiscale sliding
window. Although this exhaustive strategy can find out all
possible positions of the objects, its shortcomings are also
obvious. Due to a large number of candidate windows, it is
computationally expensive and produces too many redundant
windows. However, if only a fixed number of sliding window
templates is applied, unsatisfactory regions may be produced.

B. Feature Extraction

To recognize different objects, we need to extract visual
features that can provide a semantic and robust represen-
tation. Scale-invariant feature transform [19], histograms of
oriented gradients (HOG) [20], and Haar-like [21] features are
the representative ones. This is due to the fact that these
features can produce representations associated with complex
cells in human brain [19]. However, due to the diversity of
appearances, illumination conditions, and backgrounds, it is
difficult to manually design a robust feature descriptor to
perfectly describe all kinds of objects.

C. Classification

Besides, a classifier is needed to distinguish a target object
from all the other categories and to make the representations
more hierarchical, semantic, and informative for visual recog-
nition. Usually, the supported vector machine (SVM) [22],
AdaBoost [23], and deformable part-based model (DPM) [24]
are good choices. Among these classifiers, the DPM is a
flexible model by combining object parts with deformation
cost to handle severe deformations. In DPM, with the aid
of a graphical model, carefully designed low-level features
and kinematically inspired part decompositions are combined.
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Fig. 1. Application domains of object detection.

Discriminative learning of graphical models allows for build-
ing high-precision part-based models for a variety of object
classes.

Based on these discriminant local feature descriptors and
shallow learnable architectures, state-of-the-art results have
been obtained on PASCAL visual object classes (VOC) object
detection competition [25] and real-time embedded systems
have been obtained with a low burden on hardware. However,
small gains are obtained during 2010-2012 by only building
ensemble systems and employing minor variants of successful
methods [15]. This fact is due to the following reasons: 1) the
generation of candidate bounding boxes (BBs) with a sliding
window strategy is redundant, inefficient, and inaccurate and
2) the semantic gap cannot be bridged by the combination
of manually engineered low-level descriptors and discrimina-
tively trained shallow models.

Thanks to the emergency of deep neural networks
(DNNs) [6], [26], [S7], a more significant gain is obtained
with the introduction of regions with convolutional neural
network (CNN) features (R-CNN) [15]. DNNSs, or the most
representative CNNs, act in a quite different way from tra-
ditional approaches. They have deeper architectures with the
capacity to learn more complex features than the shallow ones.
Also, the expressivity and robust training algorithms allow to
learn informative object representations without the need to
design features manually [27].

Since the proposal of R-CNN, a great deal of improved
models have been suggested, including fast R-CNN that
jointly optimizes classification and bounding box regres-
sion tasks [16], faster R-CNN that takes an additional sub-
network to generate region proposals [17], and you only
look once (YOLO) that accomplishes object detection via a
fixed-grid regression [18]. All of them bring different degrees
of detection performance improvements over the primary
R-CNN and make real-time and accurate object detection more
achievable.

In this paper, a systematic review is provided to
summarize representative models and their different char-
acteristics in several application domains, including generic
object detection [15]-[17], salient object detection [28], [29],
face detection [30]-[32], and pedestrian detection [33], [34].
Their relationships are depicted in Fig. 1. Based on basic
CNN architectures, the generic object detection is achieved
with bounding box regression, while salient object detec-
tion is accomplished with local contrast enhancement and
pixel-level segmentation. Face detection and pedestrian detec-
tion are closely related to generic object detection and
mainly accomplished with multiscale adaption and multi-
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feature fusion/boosting forest, respectively. The dotted lines
indicate that the corresponding domains are associated with
each other under certain conditions. It should be noticed
that the covered domains are diversified. Pedestrian and face
images have regular structures, while general objects and scene
images have more complex variations in geometric structures
and layouts. Therefore, different deep models are required by
various images.

There has been a relevant pioneer effort [35] which mainly
focuses on relevant software tools to implement deep learning
techniques for image classification and object detection but
pays little attention on detailing specific algorithms. Different
from it, our work not only reviews deep learning-based object
detection models and algorithms covering different applica-
tion domains in detail but also provides their corresponding
experimental comparisons and meaningful analyses.

The rest of this paper is organized as follows. In Section II,
a brief introduction on the history of deep learning and the
basic architecture of CNN is provided. Generic object detec-
tion architectures are presented in Section III. Then, reviews
of CNN applied in several specific tasks, including salient
object detection, face detection, and pedestrian detection, are
exhibited in Section IV-VI, respectively. Several promising
future directions are proposed in Section VII. At last, some
concluding remarks are presented in Section VIII.

II. BRIEF OVERVIEW OF DEEP LEARNING

Prior to an overview on deep learning-based object detection
approaches, we provide a review on the history of deep
learning along with an introduction on the basic architecture
and advantages of CNN.

A. History: Birth, Decline, and Prosperity

Deep models can be referred to as neural networks with
deep structures. The history of neural networks can date
back to the 1940s [36], and the original intention was to
simulate the human brain system to solve general learning
problems in a principled way. It was popular in the 1980s and
1990s with the proposal of the back-propagation algorithm
by Rumelhart et al. [37]. However, due to the overfitting of
training, lack of large-scale training data, limited computation
power, and insignificance in performance compared with other
machine learning tools, neural networks fell out of fashion in
the early 2000s.

Deep learning has become popular since 2006 [26], [S7],
with a breakthrough in speech recognition [38]. The recovery
of deep learning can be attributed to the following factors.

1) The emergence of large-scale annotated training data,
such as ImageNet [39], to fully exhibit its very large
learning capacity.

2) Fast development of high-performance parallel comput-
ing systems, such as GPU clusters.

3) Significant advances in the design of network structures
and training strategies. With unsupervised and layerwise
pretraining guided by autoencoder [40] or restricted
Boltzmann machine [41], a good initialization is pro-
vided. With dropout and data augmentation, the over-
fitting problem in training has been relieved [6], [42].
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With batch normalization (BN), the training of very
DNNs becomes quite efficient [43]. Meanwhile, various
network structures, such as AlexNet [6], Overfeat [44],
GoogLeNet [45], Visual Geometry Group (VGG) [46],
and Residual Net (ResNet) [47], have been extensively
studied to improve the performance.

What prompts deep learning to have a huge impact on
the entire academic community? It may owe to the con-
tribution of Hinton’s group, whose continuous efforts have
demonstrated that deep learning would bring a revolutionary
breakthrough on grand challenges rather than just obvious
improvements on small data sets. Their success results from
training a large CNN on 1.2 million labeled images together
with a few techniques [6] [e.g., rectified linear unit (ReLU)
operation [48] and “dropout” regularization].

B. Architecture and Advantages of CNN

CNN is the most representative model of deep learning [27].
A typical CNN architecture, which is referred to as VGG16,
can be found in Fig. S1 in the supplementary material. Each
layer of CNN is known as a feature map. The feature map
of the input layer is a 3-D matrix of pixel intensities for
different color channels (e.g., RGB). The feature map of
any internal layer is an induced multichannel image, whose
“pixel” can be viewed as a specific feature. Every neu-
ron is connected with a small portion of adjacent neurons
from the previous layer (receptive field). Different types of
transformations [6], [49], [S0] can be conducted on feature
maps, such as filtering and pooling. Filtering (convolution)
operation convolutes a filter matrix (learned weights) with
the values of a receptive field of neurons and takes a non-
linear function (such as sigmoid [51], ReLU) to obtain final
responses. Pooling operation, such as max pooling, average
pooling, L2-pooling, and local contrast normalization [52],
summarizes the responses of a receptive field into one value
to produce more robust feature descriptions.

With an interleave between convolution and pooling, an ini-
tial feature hierarchy is constructed, which can be fine-tuned
in a supervised manner by adding several fully connected (FC)
layers to adapt to different visual tasks. According to the tasks
involved, the final layer with different activation functions [6]
is added to get a specific conditional probability for each
output neuron. The whole network can be optimized on an
objective function (e.g., mean squared error or cross-entropy
loss) via the stochastic gradient descent (SGD) method. The
typical VGG16 has totally 13 convolutional (conv) layers,
3 FC layers, 3 max-pooling layers, and a softmax classification
layer. The conv feature maps are produced by convoluting
3*3 filter windows, and feature map resolutions are reduced
with 2 stride max-pooling layers. An arbitrary test image of the
same size as training samples can be processed with the trained
network. Rescaling or cropping operations may be needed if
different sizes are provided [6].

The advantages of CNN against traditional methods can be
summarized as follows.

1) Hierarchical feature representation, which is the

multilevel representations from pixel to high-level
semantic features learned by a hierarchical multistage
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Fig. 2. Two types of frameworks: region proposal based and

regression/classification based. SPP: spatial pyramid pooling [64], FRCN:
faster R-CNN [16], RPN: region proposal network [17], FCN: fully con-
volutional network [65], BN: batch normalization [43], and Deconv layers:
deconvolution layers [54]

structure [15], [53], can be learned from data automati-
cally and hidden factors of input data can be disentan-
gled through multilevel nonlinear mappings.

2) Compared with traditional shallow models, a deeper
architecture provides an exponentially increased expres-
sive capability.

3) The architecture of CNN provides an opportunity to
jointly optimize several related tasks together (e.g., fast
R-CNN combines classification and bounding box
regression into a multitask learning manner).

4) Benefitting from the large learning capacity of deep
CNNs, some classical computer vision challenges can
be recast as high-dimensional data transform problems
and solved from a different viewpoint.

Due to these advantages, CNN has been widely applied
into many research fields, such as image superresolu-
tion reconstruction [54], [S5], image classification [5], [56],
image retrieval [57], [58], face recognition [8], [S5], pedes-
trian detection [59]-[61], and video analysis [62], [63].

III. GENERIC OBJECT DETECTION

Generic object detection aims at locating and classifying
existing objects in any one image and labeling them with
rectangular BBs to show the confidences of existence. The
frameworks of generic object detection methods can mainly
be categorized into two types (see Fig. 2). One follows the tra-
ditional object detection pipeline, generating region proposals
at first and then classifying each proposal into different object
categories. The other regards object detection as a regression
or classification problem, adopting a unified framework to
achieve final results (categories and locations) directly. The
region proposal-based methods mainly include R-CNN [15],
spatial pyramid pooling (SPP)-net [64], Fast R-CNN [16],
Faster R-CNN [17], region-based fully convolutional network
(R-FCN) [65], feature pyramid networks (FPN) [66], and
Mask R-CNN [67], some of which are correlated with each
other (e.g., SPP-net modifies R-CNN with an SPP Ilayer).
The regression/classification-based methods mainly include
MultiBox [68], AttentionNet [69], G-CNN [70], YOLO [18],
Single Shot MultiBox Detector (SSD) [71], YOLOv2 [72],
deconvolutional single shot detector (DSSD) [73], and deeply
supervised object detectors (DSOD) [74]. The correlations
between these two pipelines are bridged by the anchors
introduced in Faster R-CNN. Details of these methods are as
follows.
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Fig. 3. Flowchart of R-CNN [15], which consists of three stages: 1) extracts
BU region proposals, 2) computes features for each proposal using a CNN,
and then 3) classifies each region with class-specific linear SVMs.

A. Region Proposal-Based Framework

The region proposal-based framework, a two-step process,
matches the attentional mechanism of the human brain to
some extent, which gives a coarse scan of the whole scenario
first and then focuses on regions of interest (Rols). Among
the prerelated works [44], [75], [76], the most representative
one is Overfeat [44]. This model inserts CNN into the sliding
window method, which predicts BBs directly from locations
of the topmost feature map after obtaining the confidences of
underlying object categories.

1) R-CNN: Tt is of significance to improve the quality
of candidate BBs and to take a deep architecture to extract
high-level features. To solve these problems, R-CNN was
proposed by Girshick et al. [15] and obtained a mean average
precision (mAP) of 53.3% with more than 30% improvement
over the previous best result (DPM histograms of sparse
codes [77]) on PASCAL VOC 2012. Fig. 3 shows the flow-
chart of R-CNN, which can be divided into three stages as
follows.

a) Region Proposal Generation: The R-CNN adopts
selective search [78] to generate about 2000 region proposals
for each image. The selective search method relies on simple
bottom-up (BU) grouping and saliency cues to provide more
accurate candidate boxes of arbitrary sizes quickly and to
reduce the searching space in object detection [24], [39].

b) CNN-Based Deep Feature Extraction: In this stage,
each region proposal is warped or cropped into a fixed
resolution, and the CNN module in [6] is utilized to extract
a 4096-dimensional feature as the final representation. Due
to large learning capacity, dominant expressive power, and
hierarchical structure of CNNs, a high-level, semantic, and
robust feature representation for each region proposal can be
obtained.

¢) Classification and Localization: With pretrained
category-specific linear SVMs for multiple classes, different
region proposals are scored on a set of positive regions and
background (negative) regions. The scored regions are then
adjusted with bounding box regression and filtered with a
greedy nonmaximum suppression (NMS) to produce final BBs
for preserved object locations.

When there are scarce or insufficient labeled data,
pretraining is usually conducted. Instead of unsupervised
pretraining [79], R-CNN first conducts supervised pretraining
on ImageNet Large-Scale Visual Recognition Competition,
a very large auxiliary data set, and then takes a domain-specific
fine-tuning. This scheme has been adopted by most of the
subsequent approaches [16], [17].

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

In spite of its improvements over traditional methods and
significance in bringing CNN into practical object detection,
there are still some disadvantages.

1) Due to the existence of FC layers, the CNN requires a
fixed size (e.g., 227 x 227) input image, which directly
leads to the recomputation of the whole CNN for each
evaluated region, taking a great deal of time in the testing
period.

2) Training of R-CNN is a multistage pipeline. At first,
a convolutional network (ConvNet) on object proposals
is fine-tuned. Then, the softmax classifier learned by
fine-tuning is replaced by SVMs to fit in with ConvNet
features. Finally, bounding-box regressors are trained.

3) Training is expensive in space and time. Features are
extracted from different region proposals and stored on
the disk. It will take a long time to process a relatively
small training set with very deep networks, such as
VGG16. At the same time, the storage memory required
by these features should also be a matter of concern.

4) Although selective search can generate region propos-
als with relatively high recalls, the obtained region
proposals are still redundant and this procedure is
time-consuming (around 2 s to extract 2000 region
proposals).

To solve these problems, many methods have been
proposed. Geodesic object proposals [80] takes a much faster
geodesic-based segmentation to replace traditional graph
cuts. Mutiscale combinatorial grouping [81] searches different
scales of the image for multiple hierarchical segmentations and
combinatorially groups different regions to produce proposals.
Instead of extracting visually distinct segments, the edge boxes
method [82] adopts the idea that objects are more likely to
exist in BBs with fewer contours straggling their boundaries.
Also, some studies tried to rerank or refine preextracted
region proposals to remove unnecessary ones and obtained a
limited number of valuable ones, such as DeepBox [83] and
SharpMask [84].

In addition, there are some improvements to solve the
problem of inaccurate localization. Zhang et al. [85] utilized
a Bayesian optimization-based search algorithm to guide
the regressions of different BBs sequentially and trained
class-specific CNN classifiers with a structured loss to penal-
ize the localization inaccuracy explicitly. Gupta et al. [86]
improved object detection for RGB-D images with seman-
tically rich image and depth features and learned a new
geocentric embedding for depth images to encode each pixel.
The combination of object detectors and superpixel classi-
fication framework gains a promising result on the seman-
tic scene segmentation task. Ouyang et al. [87] proposed a
deformable deep CNN (DeepID-Net) that introduces a novel
deformation constrained pooling (def-pooling) layer to impose
geometric penalty on the deformation of various object parts
and makes an ensemble of models with different settings.
Lenc and Vedaldi [88] provided an analysis on the role of
proposal generation in CNN-based detectors and tried to
replace this stage with a constant and trivial region generation
scheme. The goal is achieved by biasing sampling to match
the statistics of the ground truth BBs with K-means clustering.
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Fig. 4. Architecture of SPP-net for object detection [64].

However, more candidate boxes are required to achieve com-
parable results to those of R-CNN.

2) SPP-Net: FC layers must take a fixed-size input. That
is why R-CNN chooses to warp or crop each region proposal
into the same size. However, the object may exist partly in
the cropped region and unwanted geometric distortion may be
produced due to the warping operation. These content losses or
distortions will reduce recognition accuracy, especially when
the scales of objects vary.

To solve this problem, He er al. [64] took the theory of
spatial pyramid matching (SPM) [89], [90] into consideration
and proposed a novel CNN architecture named SPP-net. SPM
takes several finer to coarser scales to partition the image into
a number of divisions and aggregates quantized local features
into mid-level representations.

The architecture of SPP-net for object detection can be
found in Fig. 4. Different from R-CNN, SPP-net reuses
feature maps of the fifth conv layer (conv5) to project region
proposals of arbitrary sizes to fixed-length feature vectors. The
feasibility of the reusability of these feature maps is due to
the fact that the feature maps not only involve the strength of
local responses but also have relationships with their spatial
positions [64]. The layer after the final conv layer is referred to
as the SPP layer. If the number of feature maps in conv5 is 256,
taking a three-level pyramid, the final feature vector for each
region proposal obtained after the SPP layer has a dimension
of 256 x (12 + 2% + 4%) = 5376.

SPP-net not only gains better results with a correct estima-
tion of different region proposals in their corresponding scales
but also improves detection efficiency in the testing period
with the sharing of computation cost before SPP layer among
different proposals.

3) Fast R-CNN: Although SPP-net has achieved impressive
improvements in both accuracy and efficiency over R-CNN,
it still has some notable drawbacks. SPP-net takes almost the
same multistage pipeline as R-CNN, including feature extrac-
tion, network fine-tuning, SVM training, and bounding-box
regressor fitting. Therefore, an additional expense on storage
space is still required. In addition, the conv layers preceding
the SPP layer cannot be updated with the fine-tuning algorithm
introduced in [64]. As a result, an accuracy drop of very deep
networks is unsurprising. To this end, Girshick [16] introduced
a multitask loss on classification and bounding box regression
and proposed a novel CNN architecture named Fast R-CNN.

The architecture of Fast R-CNN is exhibited in Fig. 5.
Similar to SPP-net, the whole image is processed with conv
layers to produce feature maps. Then, a fixed-length feature
vector is extracted from each region proposal with an Rol

Outputs: [
softmax regressor

Rol feature
Vector o h Rol

Fig. 5. Architecture of Fast R-CNN [16].

pooling layer. The Rol pooling layer is a special case of the
SPP layer, which has only one pyramid level. Each feature
vector is then fed into a sequence of FC layers before finally
branching into two sibling output layers. One output layer is
responsible for producing softmax probabilities for all C + 1
categories (C object classes plus one “background” class)
and the other output layer encodes refined bounding-box
positions with four real-valued numbers. All parameters in
these procedures (except the generation of region proposals)
are optimized via a multitask loss in an end-to-end way.

The multitasks loss L is defined in the following to jointly
train classification and bounding-box regression:

L(p’ u, tu7 U) = LC]S(p’ u) + /’{[M Z 1]L100(tu9v) (1)

where Ls(p, u) = —log p, calculates the log loss for ground
truth class u, and p, is driven from the discrete probability
distribution p = (po, - - - , pc) over the C+1 outputs from the
last FC layer. Lioc(t*, v) is defined over the predicted offsets
" = (1y, 1y, 1, t;) and ground-truth bounding-box regression
targets v = (vy, 0y, Uy, V), Where x,y, w, and & denote
the two coordinates of the box center, width, and height,
respectively. Each ¢* adopts the parameter settings in [15] to
specify an object proposal with a log-space height/width shift
and scale-invariant translation. The Iverson bracket indicator
function [u > 1] is employed to omit all background Rols.
To provide more robustness against outliers and eliminate the
sensitivity in exploding gradients, a smooth L loss is adopted
to fit bounding-box regressors as follows:

Lo (%, 0) = z smoothy,, (tl” - z),-) 2)
iex,y,w,h
where
0.5x2 if x| <1
smooth = 3
L (x) [|x|—0.5 otherwise. )

To accelerate the pipeline of Fast R-CNN, another two
tricks are of necessity. On the one hand, if training sam-
ples (i.e., Rols) come from different images, backpropagation
through the SPP layer becomes highly inefficient. Fast R-CNN
samples minibatches hierarchically, namely, N images sam-
pled randomly at first and then R/N Rols sampled in each
image, where R represents the number of Rols. Critically,
computation and memory are shared by Rols from the same
image in the forward and backward pass. On the other hand,
much time is spent in computing the FC layers during the
forward pass [16]. The truncated singular value decomposition
(SVD) [91] can be utilized to compress large FC layers and
to accelerate the testing procedure.

In the Fast R-CNN, regardless of region proposal genera-
tion, the training of all network layers can be processed in
a single stage with a multitask loss. It saves the additional
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expense on storage space and improves both accuracy and
efficiency with more reasonable training schemes.

4) Faster R-CNN: Despite the attempt to generate candi-
date boxes with biased sampling [88], state-of-the-art object
detection networks mainly rely on additional methods, such
as selective search and Edgebox, to generate a candidate pool
of isolated region proposals. Region proposal computation
is also a bottleneck in improving efficiency. To solve this
problem, Ren et al. [17], [92] introduced an additional region
proposal network (RPN), which acts in a nearly cost-free way
by sharing full-image conv features with detection network.

RPN is achieved with an FCN, which has the ability to
predict object bounds and scores at each position simultane-
ously. Similar to [78], RPN takes an image of arbitrary size to
generate a set of rectangular object proposals. RPN operates
on a specific conv layer with the preceding layers shared with
the object detection network.

The architecture of RPN is shown in Fig. 6. The network
slides over the conv feature map and fully connects to an n xn
spatial window. A low-dimensional vector (512-dimensional
for VGG16) is obtained in each sliding window and fed into
two sibling FC layers, namely, box-classification layer (cls)
and box-regression layer (reg). This architecture is imple-
mented with an n x n conv layer followed by two sibling
1 x 1 conv layers. To increase nonlinearity, ReLU is applied
to the output of the n x n conv layer.

The regressions toward true BBs are achieved by comparing
proposals relative to reference boxes (anchors). In the Faster
R-CNN, anchors of three scales and three aspect ratios are
adopted. The loss function is similar to (1)

1 1
L(pi,t;)) = ﬂ Z Lcls(Pia P;k) + iN— Z P;'kLreg (ti, ti*)
cls 5 reg <

“)

where p; is the predicted probability of the ith anchor being an
object. The ground truth label p is 1 if the anchor is positive,
otherwise 0. #; stores four parameterized coordinates of the
predicted bounding box while ¢ is related to the ground-truth
box overlapping with a positive anchor. L is a binary log loss
and Lyeg is a smoothed L loss similar to (2). These two terms
are normalized with the minibatch size (N¢s) and the number
of anchor locations (Nreg), respectively. In the form of FCNs,
Faster R-CNN can be trained end-to-end by backpropagation
and SGD in an alternate training manner.

With the proposal of Faster R-CNN, region proposal-based
CNN architectures for object detection can really be trained in
an end-to-end way. Also, a frame rate of 5 frames per second
(fps) on a GPU is achieved with the state-of-the-art object
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detection accuracy on PASCAL VOC 2007 and 2012. How-
ever, the alternate training algorithm is very time-consuming
and RPN produces objectlike regions (including backgrounds)
instead of object instances and is not skilled in dealing with
objects with extreme scales or shapes.

5) R-FCN: Divided by the Rol pooling layer, a preva-
lent family [16], [17] of deep networks for object detection
is composed of two subnetworks: a shared fully convolu-
tional subnetwork (independent of Rols) and an unshared
Rol-wise subnetwork. This decomposition originates from
pioneering classification architectures (e.g., AlexNet [6] and
VGG16 [46]) which consist of a convolutional subnetwork and
several FC layers separated by a specific spatial pooling layer.

Recent state-of-the-art image classification networks, such
as ResNets [47] and GoogLeNets [45], [93], are fully convo-
lutional. To adapt to these architectures, it is natural to con-
struct a fully convolutional object detection network without
Rol-wise subnetwork. However, it turns out to be inferior
with such a naive solution [47]. This inconsistency is due
to the dilemma of respecting translation variance in object
detection compared with increasing translation invariance in
image classification. In other words, shifting an object inside
an image should be indiscriminative in image classification
while any translation of an object in a bounding box may
be meaningful in object detection. A manual insertion of
the Rol pooling layer into convolutions can break down
translation invariance at the expense of additional unshared
regionwise layers. Therefore, Dai et al. [65] proposed an
R-FCNs (see Fig. S2 in the supplementary material).

Different from Faster R-CNN, for each category, the last
conv layer of R-FCN produces a total of k> position-sensitive
score maps with a fixed grid of k& x k first and a position-
sensitive Rol pooling layer is then appended to aggregate
the responses from these score maps. Finally, in each
Rol, k% position-sensitive scores are averaged to produce a
C + 1-d vector and softmax responses across categories are
computed. Another 4k*>-d conv layer is appended to obtain
class-agnostic BBs.

With R-FCN, more powerful classification networks
can be adopted to accomplish object detection in a fully
convolutional architecture by sharing nearly all the layers,
and the state-of-the-art results are obtained on both PASCAL
VOC and Microsoft COCO [94] data sets at a test speed
of 170 ms per image.

6) FPN: Feature pyramids built upon image pyramids
(featurized image pyramids) have been widely applied in many
object detection systems to improve scale invariance [24], [64]
[Fig. 7(a)]. However, training time and memory consumption
increase rapidly. To this end, some techniques take only
a single input scale to represent high-level semantics and
increase the robustness to scale changes [Fig. 7(b)], and image
pyramids are built at test time which results in an inconsistency
between train/test-time inferences [16], [17]. The in-network
feature hierarchy in a deep ConvNet produces feature maps of
different spatial resolutions while introduces large semantic
gaps caused by different depths [Fig. 7(c)]. To avoid using
low-level features, pioneer works [71], [95] usually build the
pyramid starting from middle layers or just sum transformed
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(a) (b)

(©) (d)

Fig. 7. Main concern of FPN [66]. (a) It is slow to use an image pyramid
to build a feature pyramid. (b) Only single-scale features are adopted for
faster detection. (c) Alternative to the featurized image pyramid is to reuse
the pyramidal feature hierarchy computed by a ConvNet. (d) FPN integrates
both (b) and (c). Blue outlines indicate feature maps and thicker outlines
denote semantically stronger features.

feature responses, missing the higher resolution maps of the
feature hierarchy.

Different from these approaches, FPN [66] holds an archi-
tecture with a BU pathway, a top-down (TD) pathway and
several lateral connections to combine low-resolution and
semantically strong features with high-resolution and semanti-
cally weak features [Fig. 7(d)]. The BU pathway, which is the
basic forward backbone ConvNet, produces a feature hierarchy
by downsampling the corresponding feature maps with a stride
of 2. The layers owning the same size of output maps are
grouped into the same network stage and the output of the last
layer of each stage is chosen as the reference set of feature
maps to build the following TD pathway.

To build the TD pathway, feature maps from higher network
stages are upsampled at first and then enhanced with those of
the same spatial size from the BU pathway via lateral connec-
tions. A 1 x 1 conv layer is appended to the upsampled map
to reduce channel dimensions and the mergence is achieved
by elementwise addition. Finally, a 3 x 3 convolution is also
appended to each merged map to reduce the aliasing effect
of upsampling and the final feature map is generated. This
process is iterated until the finest resolution map is generated.

As feature pyramid can extract rich semantics from all levels
and be trained end to end with all scales, the state-of-the-
art representation can be obtained without sacrificing speed
and memory. Meanwhile, FPN is independent of the backbone
CNN architectures and can be applied to different stages of
object detection (e.g., region proposal generation) and to many
other computer vision tasks (e.g., instance segmentation).

7) Mask R-CNN: Instance segmentation [96] is a challeng-
ing task which requires detecting all objects in an image and
segmenting each instance (semantic segmentation [97]). These
two tasks are usually regarded as two independent processes.
The multitask scheme will create spurious edge and exhibit
systematic errors on overlapping instances [98]. To solve this
problem, parallel to the existing branches in Faster R-CNN
for classification and bounding box regression, the Mask R-
CNN [67] adds a branch to predict segmentation masks in a
pixel-to-pixel manner (Fig. 8).

Different from the other two branches that are inevitably
collapsed into short output vectors by FC layers, the segmen-
tation mask branch encodes an m x m mask to maintain the
explicit object spatial layout. This kind of fully convolutional

Fig. 8.

Mask R-CNN framework for instance segmentation [67].

representation requires fewer parameters but is more accurate
than that in [97]. Formally, besides the two losses in (1) for
classification and bounding box regression, an additional loss
for segmentation mask branch is defined to reach a multitask
loss. This loss is only associated with ground-truth class and
relies on the classification branch to predict the category.

Because Rol pooling, the core operation in Faster R-CNN,
performs a coarse spatial quantization for feature extraction,
misalignment is introduced between the Rol and the features.
It affects classification little because of its robustness to small
translations. However, it has a large negative effect on pixel-
to-pixel mask prediction. To solve this problem, Mask R-CNN
adopts a simple and quantization-free layer, namely, RolAlign,
to preserve the explicit per-pixel spatial correspondence faith-
fully. RoIAlign is achieved by replacing the harsh quantization
of Rol pooling with bilinear interpolation [99], computing the
exact values of the input features at four regularly sampled
locations in each Rol bin. In spite of its simplicity, this
seemingly minor change improves mask accuracy greatly,
especially under strict localization metrics.

Given the Faster R-CNN framework, the mask branch
only adds a small computational burden and its cooperation
with other tasks provides complementary information for
object detection. As a result, Mask R-CNN is simple to
implement with promising instance segmentation and object
detection results. In a word, Mask R-CNN is a flexible
and efficient framework for instance-level recognition, which
can be easily generalized to other tasks (e.g., human pose
estimation [7], [S4]) with minimal modification.

8) Multitask Learning, Multiscale Representation, and Con-
textual Modeling: Although the Faster R-CNN gets promising
results with several hundred proposals, it still struggles in
small-size object detection and localization, mainly due to
the coarseness of its feature maps and limited information
provided in particular candidate boxes. The phenomenon is
more obvious on the Microsoft COCO data set which consists
of objects at a broad range of scales, less prototypical images,
and requires more precise localization. To tackle these prob-
lems, it is of necessity to accomplish object detection with
multitask learning [100], multiscale representation [95], and
context modeling [101] to combine complementary informa-
tion from multiple sources.

Multitask learning learns a useful representation for mul-
tiple correlated tasks from the same input [102], [103].
Brahmbhatt et al. [100] introduced conv features trained for
object segmentation and “stuff” (amorphous categories such as
ground and water) to guide accurate object detection of small
objects (StuffNet). Dai et al. [97] presented multitask network
cascades of three networks, namely, class-agnostic region
proposal generation, pixel-level instance segmentation, and
regional instance classification. Li ef al. [104] incorporated the
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weakly supervised object segmentation cues and region-based
object detection into a multistage architecture to fully exploit
the learned segmentation features.

Multiscale representation combines activations from
multiple layers with skip-layer connections to provide
semantic information of different spatial resolutions [66].
Cai et al. [105] proposed the multiscale CNN (MS-CNN)
to ease the inconsistency between the sizes of objects
and receptive fields with multiple scale-independent
output layers. Yang et al. [34] investigated two strategies,
namely, scale-dependent pooling (SDP) and layerwise
cascaded rejection classifiers (CRCs), to exploit appropriate
scale-dependent conv features. Kong er al. [101] proposed
the HyperNet to calculate the shared features between RPN
and object detection network by aggregating and compressing
hierarchical feature maps from different resolutions into a
uniform space.

Contextual modeling improves detection performance by
exploiting features from or around Rols of different support
regions and resolutions to deal with occlusions and local
similarities [95]. Zhu et al. [106] proposed the SegDeepM to
exploit object segmentation which reduces the dependency
on initial candidate boxes with the Markov random field.
Moysset et al. [108] took advantage of four directional 2-D
long short-term memories (LSTMs) [107] to convey global
context between different local regions and reduced trainable
parameters with local parameter sharing. Zeng et al. [109] pro-
posed a novel gated bidirectional-net (GBD-Net) by introduc-
ing gated functions to control message transmission between
different support regions.

The combination incorporates different components above
into the same model to improve detection performance fur-
ther. Gidaris and Komodakis [110] proposed the multire-
gion CNN (MR-CNN) model to capture different aspects of
an object, the distinct appearances of various object parts,
and semantic segmentation-aware features. To obtain con-
textual and multiscale representations, Bell er al. [95] pro-
posed the inside—outside net (ION) by exploiting informa-
tion both inside and outside the Rol with spatial recurrent
neural networks [111] and skip pooling [101]. Zagoruyko
et al. [112] proposed the MultiPath architecture by introducing
three modifications to the Fast R-CNN, including multiscale
skip connections [95], a modified foveal structure [110], and
a novel loss function summing different intersection over
union (IoU) losses.

9) Thinking in Deep Learning-Based Object Detection:
Apart from the above-mentioned approaches, there are still
many important factors for continued progress.

There is a large imbalance between the number of annotated
objects and background examples. To address this problem,
Shrivastava et al. [113] proposed an effective online mining
algorithm (OHEM) for automatic selection of the hard exam-
ples, which leads to a more effective and efficient training.

Instead of concentrating on feature extraction, Ren et al.
[114] made a detailed analysis on object classifiers and found
that it is of particular importance for object detection to con-
struct a deep and convolutional per-region classifier carefully,
especially for ResNets [47] and GoogLeNets [45].
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Traditional CNN framework for object detection is not
skilled in handling significant scale variation, occlusion,
or truncation, especially when only 2-D object detection is
involved. To address this problem, Xiang et al. [60] proposed
a novel subcategory-aware RPN, which guides the generation
of region proposals with subcategory information related to
object poses and jointly optimize object detection and subcat-
egory classification.

Ouyang et al. [115] found that the samples from differ-
ent classes follow a long-tailed distribution, which indicates
that different classes with distinct numbers of samples have
different degrees of impacts on feature learning. To this end,
objects are first clustered into visually similar class groups,
and then, a hierarchical feature learning scheme is adopted to
learn deep representations for each group separately.

In order to minimize the computational cost and achieve
the state-of-the-art performance, with the “deep and thin”
design principle and following the pipeline of Fast R-CNN,
Hong et al. [116] proposed the architecture of PVANET,
which adopts some building blocks including concatenated
ReLU [117], Inception [45], and HyperNet [101] to reduce
the expense on multiscale feature extraction and trains the
network with BN [43], residual connections [47], and learning
rate scheduling based on plateau detection [47]. The PVANET
achieves the state-of-the-art performance and can be processed
in real time on Titan X GPU (21 fps).

B. Regression/Classification-Based Framework

Region proposal-based frameworks are composed of several
correlated stages, including region proposal generation, feature
extraction with CNN, classification, and bounding box regres-
sion, which are usually trained separately. Even in the recent
end-to-end module Faster R-CNN, an alternative training is
still required to obtain shared convolution parameters between
RPN and detection network. As a result, the time spent in
handling different components becomes the bottleneck in the
real-time application.

One-step frameworks based on global regression/
classification, mapping straightly from image pixels to
bounding box coordinates and class probabilities, can reduce
time expense. We first review some pioneer CNN models
and then focus on two significant frameworks, namely,
YOLO [18] and SSD [71].

1) Pioneer Works: Previous to YOLO and SSD, many
researchers have already tried to model object detection as
a regression or classification task.

Szegedy et al. [118] formulated the object detection task
as a DNN-based regression, generating a binary mask for the
test image and extracting detections with a simple bounding
box inference. However, the model has difficulty in handling
overlapping objects, and BBs generated by direct upsampling
is far from perfect.

Pinheiro et al. [119] proposed a CNN model with two
branches: one generates class agnostic segmentation masks
and the other predicts the likelihood of a given patch centered
on an object. Inference is efficient since class scores and
segmentation can be obtained in a single model with most
of the CNN operations shared.
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Class probability map.

Fig. 9. Main idea of YOLO [18].

Erhan et al [68] and Szegedy et al. [120] proposed the
regression-based MultiBox to produce scored class-agnostic
region proposals. A unified loss was introduced to bias both
localization and confidences of multiple components to predict
the coordinates of class-agnostic BBs. However, a large num-
ber of additional parameters are introduced to the final layer.

Yoo et al. [69] adopted an iterative classification approach
to handle object detection and proposed an impressive end-
to-end CNN architecture named AttentionNet. Starting from
the top-left and bottom-right corners of an image, Attention-
Net points to a target object by generating quantized weak
directions and converges to an accurate object boundary box
with an ensemble of iterative predictions. However, the model
becomes quite inefficient when handling multiple categories
with a progressive two-step procedure.

Najibi er al [70] proposed a proposal-free iterative
grid-based object detector (G-CNN), which models object
detection as finding a path from a fixed grid to boxes tightly
surrounding the objects [70]. Starting with a fixed multiscale
bounding box grid, G-CNN trains a regressor to move and
scale elements of the grid toward objects iteratively. However,
G-CNN has a difficulty in dealing with small or highly
overlapping objects.

2) YOLO: Redmon et al. [18] proposed a novel framework
called YOLO, which makes the use of the whole topmost
feature map to predict both confidences for multiple categories
and BBs. The basic idea of YOLO is exhibited in Fig. 9.
YOLO divides the input image into an S x S grid and each
grid cell is responsible for predicting the object centered
in that grid cell. Each grid cell predicts B BBs and their
corresponding confidence scores. Formally, confidence scores
are defined as Pr(Object)*IOUtrr“;g, which indicates how likely
there exist objects (Pr(ObJect) > 0) and shows confidences
of its prediction (IOUgr“;(}f) At the same time, regardless
of the number of boxes, C conditional class probabilities
(Pr(Class; |Object)) should also be predicted in each grid cell.
It should be noticed that only the contribution from the grid
cell containing an object is calculated.

At test time, class-specific confidence scores for each box
are achieved by multiplying the individual box confidence
predictions with the conditional class probabilities as follows:

Pr(Object) * IOU™™ « Pr(Class; |Object)

pred
= Pr(Class;) * IOU%  (5)
where the existing probability of class-specific objects in the
box and the fitness between the predicted box and the object
are both taken into consideration.

9
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In a certain cell i, (x;, y;) denote the center of the box relative
to the bounds of the grid cell, (w;, h;) are the normalized width
and height relative to the image size, C; represents the confi-
dence scores, ]1 % indicates the existence of objects, and ]1 bj
denotes that the prediction is conducted by the jth boundlng
box predictor. Note that only when an object is present in
that grid cell, the loss function penalizes classification errors.
Similarly, when the predictor is “responsible” for the ground
truth box (i.e., the highest IoU of any predictor in that grid cell
is achieved), bounding box coordinate errors are penalized.

The YOLO consists of 24 conv layers and 2 FC layers,
of which some conv layers construct ensembles of inception
modules with 1 x 1 reduction layers followed by 3 x 3 conv
layers. The network can process images in real time at 45 fps
and a simplified version Fast YOLO can reach 155 fps
with better results than other real-time detectors. Furthermore,
YOLO produces fewer false positives on the background,
which makes the cooperation with Fast R-CNN become pos-
sible. An improved version, YOLOv2, was later proposed
in [72], which adopts several impressive strategies, such as
BN, anchor boxes, dimension cluster, and multiscale training.

3) SSD: YOLO has a difficulty in dealing with small
objects in groups, which is caused by strong spatial con-
straints imposed on bounding box predictions [18]. Mean-
while, YOLO struggles to generalize to objects in new/unusual
aspect ratios/configurations and produces relatively coarse
features due to multiple downsampling operations.

Aiming at these problems, Liu ef al. [71] proposed an SSD,
which was inspired by the anchors adopted in MultiBox [68],
RPN [17], and multiscale representation [95]. Given a specific
feature map, instead of fixed grids adopted in YOLO, the SSD
takes the advantage of a set of default anchor boxes with
different aspect ratios and scales to discretize the output space
of BBs. To handle objects with various sizes, the network
fuses predictions from multiple feature maps with different
resolutions.

The architecture of SSD is demonstrated in Fig. 10. Given
the VGG16 backbone architecture, SSD adds several feature
layers to the end of the network, which are responsible for
predicting the offsets to default boxes with different scales
and aspect ratios and their associated confidences. The net-
work is trained with a weighted sum of localization loss
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TABLE I
OVERVIEW OF PROMINENT GENERIC OBJECT DETECTION ARCHITECTURES
Framework |  Proposal | Multiscale Input | Learning Method | Loss Function | Softmax Layer | End-to-end Train | Platform | Language |
R-CNN [15] Selective Search - SGD,BP Hinge loss (classi ion). ding box + - Caffe Matlab
SPP-net [64] EdgeBoxes + SGD Hinge loss ( ion),B ling box + - Caffe Matlab
Fast RCNN [16] Selective Search + SGD Class Log loss+bounding box regression + - Caffe Python
Faster R-CNN [17] RPN + SGD Class Log loss+bounding box regression + + Caffe Python/Matlab
R-FCN [65] RPN + SGD Class Log loss+bounding box regression - + Caffe Matlab
- Class Log loss+bounding box regression o e
Mask R-CNN [67] RPN + SGD FSemantic sigmoid Toss + + TensorFlow/Keras Python
FPN [66] RPN + Synchronized SGD Class Log loss+bounding box regression + TensorFlow Python
Class q d error loss+b ing box
YOLO 18] - SGD +object confidence+background confidence * Darknet C
SSD [71] SGD Class softmax loss+bounding box regression + Caffe CH++
Class s squared error loss+b ing box
YOLOv2 [72] SGD +object confidence+background confidence * * Darknet ¢
4" denotes that cor ing are emp while ‘-* denotes that this technique is not considered. It should be noticed that R-CNN and SPP-net can not be trained end-to-end with a multi-task loss while the
other architectures are based on multi-task joint training. As most of these architectures are re-implemented on different platforms with various programming languages, we only list the information associated with the versions
by the referenced authors.
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Fig. 10.  Architecture of SSD 300 [71]. SSD adds several feature layers to the end of VGG16 backbone network to predict the offsets to default anchor

boxes and their associated confidences. Final detection results are obtained by conducting NMS on multiscale refined BBs.

(e.g., Smooth L1) and confidence loss (e.g., Softmax), which
is similar to (1). Final detection results are obtained by
conducting NMS on multiscale refined BBs.

Integrating with hard negative mining, data augmentation,
and a larger number of carefully chosen default anchors,
SSD significantly outperforms the Faster R-CNN in terms of
accuracy on PASCAL VOC and COCO while being three
times faster. The SSD300 (input image size is 300 x 300)
runs at 59 fps, which is more accurate and efficient than
YOLO. However, SSD is not skilled at dealing with small
objects, which can be relieved by adopting better feature
extractor backbone (e.g., ResNetl01), adding deconvolution
layers with skip connections to introduce additional large-scale
context [73], and designing better network structure (e.g., stem
block and dense block) [74].

C. Experimental Evaluation

We compare various object detection methods on three
benchmark data sets, including PASCAL VOC 2007 [25],
PASCAL VOC 2012 [121], and Microsoft COCO [94].

The evaluated approaches include R-CNN [15], SPP-
net [64], Fast R-CNN [16], networks on convolutional
feature maps (NOC) [114], Bayes [85], MR-CNN&

S-CNN [105], Faster R-CNN [17], HyperNet [101], ION [95],
MS-GR [104], StuffNet [100], SSD300 [71], SSD512 [71],
OHEM [113], SDP+CRC [34], G-CNN [70], SubCNN [60],
GBD-Net [109], PVANET [116], YOLO [18], YOLOV2 [72],
R-FCN [65], FPN [66], Mask R-CNN [67], DSSD [73],
and DSOD [74]. If no specific instructions for the adopted
framework are provided, the utilized model is a VGG16 [46]
pretrained on 1000-way ImageNet classification task [39].
Due to the limitation of the paper length, we only provide an
overview, including proposal, learning method, loss function,
programing language, and platform, of the prominent
architectures in Table I. Detailed experimental settings, which
can be found in the original papers, are missed. In addition
to the comparisons of detection accuracy, another comparison

is provided to evaluate their test consumption on PASCAL
VOC 2007.

1) PASCAL VOC 2007/2012: PASCAL VOC 2007 and
2012 data sets consist of 20 categories. The evaluation terms
are AP in each single category and mAP across all the 20 cat-
egories. Comparative results are exhibited in Tables II and III,
from which the following remarks can be obtained.

1) If incorporated with a proper way, more powerful back-
bone CNN models can definitely improve the object
detection performance (the comparison among R-CNN
with AlexNet, R-CNN with VGG16 and SPP-net with
ZF-Net [122]).

With the introduction of the SPP layer (SPP-net), end-
to-end multitask architecture (FRCN), and RPN (Faster
R-CNN), object detection performance is improved
gradually and apparently.

Due to a large number of trainable parameters, in order
to obtain multilevel robust features, data augmentation
is very important for deep learning-based models (Faster
R-CNN with “07,” “07 + 12,” and “07 4 12 + coco”).
Apart from basic models, there are still many
other factors affecting object detection performance,
such as multiscale and multiregion feature extrac-
tion (e.g., MR-CNN), modified classification networks
(e.g., NOC), additional information from other corre-
lated tasks (e.g., StuffNet, HyperNet), multiscale rep-
resentation (e.g., ION), and mining of hard negative
samples (e.g., OHEM).

As YOLO is not skilled in producing object localizations
of high IoU, it obtains a very poor result on VOC 2012.
However, with the complementary information from Fast
R-CNN (YOLO+FRCN) and the aid of other strategies,
such as anchor boxes, BN, and fine-grained features,
the localization errors are corrected (YOLOV2).

By combining many recent tricks and modeling the
whole network as a fully convolutional one, R-FCN

2)

3)

4)

5)

0)
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TABLE II
COMPARATIVE RESULTS ON VOC 2007 TEST SET (%)

Methods | Trainedon | areo  bike bird boat bottle  bus car cat  chair cow table dog horse mbike person plant sheep  sofa  train tv | mAP
R-CNN (Alex) [15] 07 68.1 728 568 43.0 368 663 742 676 344 635 545 612 69.1 68.6 587 334 62.9 511 625 686 | 585
R-CNN(VGG16) [15] 07 734 770 634 454 446 751 781 798 405 737 622 794 781 73.1 64.2 35.6 66.8 672 704 711 66.0
SPP-net(ZF) [64] 07 685 717 587 419 425 677 721 738 347 670 634 660 725 713 589 328 60.9 56.1 679 688 | 60.9
07 683 773 685 524 386 785 795 810 471 736 645 772 805 75.8 66.6 343 65.2 644 756 664 | 66.8

Bayes [85] 07 741 832 670 508 516 762 814 772 481 789 656 773 784 75.1 70.1 41.4 69.6 608 702 737 | 685

Fast R-CNN [16] 07+12 770 781 693 594 383 816 786 867 428 788 689 847 820 76.6 69.9 31.8 70.1 748 804 704 | 70.0
SDP+CRC [34] 07 76.1 794 682 526 460 784 784 81.0 467 735 653 786 810 76.7 773 39.0 65.1 672 775 703 | 689
SubCNN [60] 07 702 805 695 603 479 790 787 842 485 739 630 827 806 76.0 70.2 382 624 617 777 605 | 685
StuffNet30 [100] 07 726 817 706 60.5 530 815 837 89 522 789 707 850 857 71.0 78.7 42.2 736 692 792 738 | 727
OC [114] 07+12 763 814 744 617 60.8 847 782 829 530 792 692 832 832 785 68.0 45.0 716 767 822 757 | 733
MR-CNN&S-CNN [105] 07+12 803 841 785 708 685 880 859 878 603 852 737 872 865 85.0 76.4 485 76.3 755 850 810 | 782
HyperNet [101] 07+12 774 833 750  69.1 624 831 874 874 571 798 714 851 85.1 80.0 79.1 512 79.1 757 809 765 | 763
MS-GR [104] 07+12 80.0 81.0 774 721 64.3 882 831 84 644 84 731 873 874 85.1 79.6 50.1 784 795 869 755 | 786
OHEM-+Fast R-CNN [113] 07+12 80.6 8.7 798 699  60.8 883 879 8.6 597 8. 765 871 87.3 82.4 78.8 537 80.5 787 845 807 | 789
ON [95 07+124S 802 8.2 788 709 626 866 869 898 617 869 765 884 875 83.4 80.5 524 78.1 772 869 835 | 79.2
Faster R-CNN [17] 07 700 806 70.1 573 499 782 804 8.0 522 753 672 803 798 75.0 763 39.1 68.3 673  8l1 676 | 699
Faster R-CNN [17] 07+12 765 790 709 655 52.1 83.1 847 864 520 819 657 848 846 71.5 76.7 38.8 736 739 830 726 | 732
Faster R-CNN [17] 07+12+COCO | 843 820 777 689 657 88.1 834 89 636 8.3 708 859 876 80.1 82.3 53.6 804 758 86.6 789 | 788
SSD300 [71] 07+12+4COCO | 809 863 790 762 576 873 882 8.6 605 854 767 875 892 84.5 81.4 550 819 815 859 789 | 79.6
SSD512 [71] 07+124COCO | 86.6 883 824 760 663 886 889 8.1 651 884 736 865 88.9 85.3 84.6 59.1 850 804 874 812 | 816

*07: VOC2007 trainval, ‘07+12’: union of VOC2007 and VOC2012 trainval, ‘07+12+COCO’: trained on COCO trainval3sk at first and then fine-tuned on 07+12. The S in ION “07+12+S’ denotes SBD segmentation labels.

TABLE III
COMPARATIVE RESULTS ON VOC 2012 TEST SET (%)

Methods | Trainedon | arco bike bird boat botle bus  car  cat  chair cow table dog horse mbike person plant sheep sofa train  tv | mAP
R-CNN(Alex) [15] 12 718 658 520 341 326 596 600 698 276 520 417 696 613 683 578 296 578 409 593 541 | 533
R-CNN(VGG16) [15] 12 796 727 619 412 419 659 664 846 385 672 467 820 748 760 652 356 654 542 674 603 | 624
Bayes [85] 12 829 761 641 446 494 703 712 846 427 686 558 827 T71 799 687 414 690 600 720 662 | 664

Fast R-CNN [65] 07++12 823 784 708 523 387 778 716 893 442 730 550 875 805 808 720 351 683 657 804 642 | 684
SutfiNet30 [100] 12 830 769 712 516 501 764 757 878 483 748 557 857 812 803 795 442 718 610 785 654 | 700
NOC [114] 07+12 828 790 716 523 537 741 690 849 469 743 531 80 813 795 722 389 724 595 767 681 | 6838
MR-CNN&S-CNN [105] 07++12 855 829 766 578 627 794 772 866 550 790 622 87.0 834 847 789 453 734 658 803 740 | 739
HyperNet [101] 07++12 842 785 736 556 537 787 798 877 496 749 521 8.0 817 833 818 486 735 594 799 657 | 714
OHEM#+Fast R-CNN [113] | 07++12+coco | 90.1 874 799 658 663 861 850 929 624 834 695 906 889 889 8.6 500 820 747 832 773 | 80.1
N [95 07+1245 | 875 847 768 638 583 826 790 909 578 820 647 889 865 847 823 514 782 692 852 735 | 764

Faster R-CNN [17] 07++12 849 798 743 539 498 775 759 885 456 7.1 553 89 817 809 796 401 726 609 812 615 | 704
Faster R-CNN [17] 07++12+coco | 874 836 768 629 506 819 820 913 549 826 590 8.0 855 847 841 522 789 655 854 702 | 759
OLO [18] 07++12 770 672 577 383 227 683 559 814 362 608 485 772 723 713 635 280 522 548 739 508 | 57.9
YOLO+Fast R-CNN [18] 07++12 834 785 735 558 434 790 731 894 494 755 570 875 809 810 747 418 715 685 821 672 | 707
YOLOV2 [72] 07++12+coco | 888 870 778 649 S18 852 793 931 644 814 702 913 881 872 810 577 781 710 885 768 | 782
SSD300 [71] 07++12+coco | 910 860 781 650 554 849 840 934 621 836 673 Ol3 889 886 856 547 838 773 883 765 | 793
SSD512 [71] 07++12+coco | 914 886 826 714 631 874 881 939 669 866 663 920 917 908 885 609 870 754 902 804 | 822
R-FCN (ResNet101) [65] | O7++12+coco | 92.3 899 867 747 752 867 890 958 702 904 665 950 932 921 911 710 87 760 920 834 | 850

¥ 407++12’: union of VOC2007 trainval and test and VOC2012 trainval. ‘07++12+COCO’: trained on COCO trainval35k at first then fine-tuned on 07++12.

achieves a more obvious improvement of detection per-
formance over other approaches.

2) Microsoft COCO: Microsoft COCO is composed
of 300000 fully segmented images, in which each image has
an average of 7 object instances from a total of 80 categories.
As there are a lot of less iconic objects with a broad range
of scales and a stricter requirement on object localization,
this data set is more challenging than PASCAL 2012. Object
detection performance is evaluated by AP computed under
different degrees of IoUs and on different object sizes. The
results are given in Table IV.

Besides similar remarks to those of PASCAL VOC, some
other conclusions can be drawn as follows from Table IV.

1) Multiscale training and test are beneficial in improv-
ing object detection performance, which provide addi-
tional information in different resolutions (R-FCN).
FPN and DSSD provide some better ways to build
feature pyramids to achieve multiscale representation.
The complementary information from other related tasks
is also helpful for accurate object localization (Mask
R-CNN with instance segmentation task).

2) Overall, region proposal-based methods, such as Faster
R-CNN and R-FCN, perform better than regression/
classification-based approaches, namely, YOLO and
SSD, due to the fact that quite a lot of localization
errors are produced by regression/classification-based
approaches.

3) Context modeling is helpful to locate small objects,
which provides additional information by consult-
ing nearby objects and surroundings (GBD-Net and
multipath).

4) Due to the existence of a large number of nonstandard
small objects, the results on this data set are much worse
than those of VOC 2007/2012. With the introduction of
other powerful frameworks (e.g., ResNeXt [123]) and
useful strategies (e.g., multitask learning [67], [124]),
the performance can be improved.

5) The success of DSOD in training from scratch stresses
the importance of the network design to release the
requirements for perfect pretrained classifiers on relevant
tasks and a large number of annotated samples.

3) Timing Analysis: Timing analysis (Table V) is conducted
on Intel i7-6700K CPU with a single core and NVIDIA
Titan X GPU. Except for “SS” which is processed with CPU,
the other procedures related to CNN are all evaluated on GPU.
From Table V, we can draw some conclusions as follows.

1) By computing CNN features on shared feature maps
(SPP-net), test consumption is reduced largely. Test
time is further reduced with the unified multitask learn-
ing (FRCN) and removal of additional region proposal
generation stage (Faster R-CNN). It is also helpful to
compress the parameters of FC layers with SVD [91]
(PAVNET and FRCN).

2) It takes additional test time to extract multiscale fea-
tures and contextual information (ION and MR-RCNN&
S-RCNN).

3) It takes more time to train a more complex and deeper
network (ResNetl01 against VGG16) and this time
consumption can be reduced by adding as many lay-
ers into shared fully convolutional layers as possible
(FRCN).
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TABLE IV
COMPARATIVE RESULTS ON MICROSOFT COCO TEST DEV SET (%)
Methods | Trained on | 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L
Fast R-CNN [16] train 20.5 399 194 4.1 20.0 358 213 294 30.1 7.3 32.1 52.0
ION [95 train 23.6 432 236 64 241 383 232 327 35 101 377 536
NOC+FRCN(VGG16) [114] train 212 41.5 19.7 - - - - - - - -
NOC+FRCN(Google) [114] train 24.8 444 252 - - - - - -
NOC+FRCN (ResNet101) [114] train 272 484 276 - - - - - - - - -
GBD-Net [109] train 27.0 45.8 - - - - - - -
OHEM+FRCN [113] train 22.6 425 222 5.0 237 346 - - - - - -
OHEM+FRCN* [113] train 24.4 444 248 7.1 264 379 - - -
OHEM+FRCN* [113] trainval 255 459  26.1 74 277 385 - - - - - -
Faster R-CNN [17] trainval 242 453 235 7.7 264 371 238 340 346 120 385 544
YOLOV2 [72] trainval35k 21.6 44.0 19.2 5.0 224 355 207 316 333 9.8 36.5 544
SSD300 [71] trainval35k 232 412 234 53 232 396 225 332 353 9.6 376 565
SSD512 [71] trainval35k 26.8 46.5 278 9.0 289 419 248 375 398 140 435 59.0
R-FCN (ResNet101) [65] trainval 29.2 515 - 108 328 450 - - - - - -
R-FCN*(ResNet101) [65] trainval 29.9 51.9 - 104 324 433 - - -
R-FCN**(ResNet101) [65] trainval 31.5 53.2 - 143 355 442 - - - - - -
Multi-path [112] trainval 332 519  36.. 13.6 372 47.8 9. 46.0 483 234 560 664
FPN (ResNet101) [66] trainval35k 36.2 59.1 390 182 39.0 482 - - - - - -
Mask (ResNetl01+FPN) [67] trainval35k 38.2 60.3 417 20.1 41.1 502 - - -
Mask (ResNeXt101+FPN) [67] trainval35k 39.8 623 434 221 432 512 - - - - - -
DSSD513 (ResNet101) [73] trainval35k 332 533 352 13.0 354 511 289 435 462 218 49.1 66.4
DSOD300 [74] trainval 29.3 473 306 94 31,5 47.0 273 407 430 167 47.1 650

* FRCN*: Fast R-CNN with multi-scale training, R-FCN*: R-FCN with multi-scale training, R-FCN**: R-FCN with multi-scale training and

testing, Mask: Mask R-CNN.

TABLE V
COMPARISON OF TESTING CONSUMPTION ON VOC 07 TEST SET
Methods | Trained on | mAP(%) | Test time(sec/img) | Rate(FPS)

SS+R-CNN [15] 07 66.0 32.84 0.03
SS+SPP-net [64] 07 63.1 23 0.44
SS+FRCN [16] 07+12 66.9 1.72 0.6
SDP+CRC [34] 07 68.9 0.47 2.1
SS+HyperNet* [101] 07+12 76.3 0.20 5
MR-CNN&S-CNN [105] 07+12 782 30 0.03
ION [95] 07+12+S 79.2 1.92 0.5
Faster R-CNN(VGG16) [17] 07+12 73.2 0.11 9.1
Faster R-CNN(ResNet101) [17] 07+12 83.8 2.24 0.4
YOLO [18] 07+12 63.4 0.02 45
SSD300 [71] 07+12 743 0.02 46
SSD512 [71] 07+12 76.8 0.05 19
R-FCN(ResNet101) [65] 07+12+coco 83.6 0.17 5.9
YOLOV2(544#544) [72] 07+12 78.6 0.03 40
DSSD321(ResNet101) [73] 07+12 78.6 0.07 13.6
DSOD300 [74] 07+12+coco 81.7 0.06 17.4
PVANET+ [116] 07+12+coco 83.8 0.05 21.7
PVANET+(compress) [116] 07+12+coco 82.9 0.03 313

* SS: Selective Search [15], SS*: ‘fast mode’ Selective Search [16], HyperNet*: the speed up version of HyperNet and PAVNET+
(compresss): PAVNET with additional bounding box voting and compressed fully convolutional layers.

4) Regression-based models can usually be processed
in real time at the cost of a drop in accuracy
compared with region proposal-based models. Also,
region proposal-based models can be modified into
real-time systems with the introduction of other
tricks [116] (PVANET), such as BN [43] and residual
connections [123].

IV. SALIENT OBJECT DETECTION

Visual saliency detection, one of the most important and
challenging tasks in computer vision, aims to highlight the
most dominant object regions in an image. Numerous appli-
cations incorporate the visual saliency to improve their perfor-
mance, such as image cropping [125] and segmentation [126],
image retrieval [57], and object detection [66].

Broadly, there are two branches of approaches in salient
object detection, namely, BU [127] and TD [128]. Local
feature contrast plays the central role in BU salient object
detection, regardless of the semantic contents of the scene.
To learn local feature contrast, various local and global fea-
tures are extracted from pixels, e.g., edges [129] and spa-
tial information [130]. However, high-level and multiscale
semantic information cannot be explored with these low-level
features. As a result, low-contrast salient maps instead of
salient objects are obtained. TD salient object detection is
task-oriented and takes prior knowledge about object cate-
gories to guide the generation of salient maps. Taking semantic
segmentation as an example, a saliency map is generated in the
segmentation to assign pixels to particular object categories via
a TD approach [131]. In a word, TD saliency can be viewed

as a focus-of-attention mechanism, which prunes BU salient
points that are unlikely to be parts of the object [132].

A. Deep Learning in Salient Object Detection

Due to the significance for providing high-level and mul-
tiscale feature representation and the successful applications
in many correlated computer vision tasks, such as semantic
segmentation [131], edge detection [133], and generic object
detection [16], it is feasible and necessary to extend CNN to
salient object detection.

The early work by Vig et al. [29] follows a completely
automatic data-driven approach to perform a large-scale search
for optimal features, namely, an ensemble of deep networks
with different layers and parameters. To address the problem
of limited training data, Kummerer et al. [134] proposed the
Deep Gaze by transferring from the AlexNet to generate a
high-dimensional feature space and create a saliency map.
A similar architecture was proposed by Huang ef al. [135] to
integrate saliency prediction into pretrained object recognition
DNNs. The transfer is accomplished by fine-tuning DNNs’
weights with an objective function based on the saliency
evaluation metrics, such as similarity, KL-divergence, and
normalized scanpath saliency.

Some works combined local and global visual
clues to improve salient object detection performance.
Wang et al. [136] trained two independent deep CNNs
(DNN-L and DNN-G) to capture local information and global
contrast and predicted saliency maps by integrating both
local estimation and global search. Cholakkal er al. [137]
proposed a weakly supervised saliency detection framework
to combine visual saliency from BU and TD saliency
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TABLE VI
COMPARISON BETWEEN STATE-OF-THE-ART METHODS

Dataset |

Metrics | CHM [150] | RC [151] | DRFI [152] | MC [138] | MDF [146] | LEGS [136] | DSR [149] | MTDNN [141] | CRPSD [142] | DCL [143] | ELD [153] | NLDF [154] | DSSC [155]

PASCALS | wF 0.631 0.640 0.679 0.721 0.764 0.756 0.697 0.818 0.776 0.822 0.767 0.831 0.830
MAE 0.222 0.225 0.221 0.147 0.145 0.157 0.128 0.170 0.063 0.108 0.121 0.099 0.080

ECSSD wFpg 0.722 0.741 0.787 0.822 0.833 0.827 0.872 0.810 0.849 0.898 0.865 0.905 0.915
MAE 0.195 0.187 0.166 0.107 0.108 0.118 0.037 0.160 0.046 0.071 0.098 0.063 0.052

HKU-IS wFpg 0.728 0.726 0.783 0.781 0.860 0.770 0.833 0.821 0.907 0.844 0.902 0.913
MAE 0.158 0.165 0.143 0.098 0.129 0.118 0.040 0.043 0.048 0.071 0.048 0.039

wFpg | 0.657 | 0.712 ‘ 0.708 | 0.785 | 0.707 | | 0.781 ‘ | 0.832 | 0.760 ‘ 0.810 | 0.842

SOD | 0.655 |

MAE 0.249 0.242 0.215 0.184 0.155 0.205

0.150 0.126 0.154 0.143 0.118

" The bigger wFﬁ is or the smaller MAE is, the better the performance is.

maps and refined the results with a multiscale superpixel-
averaging. Zhao et al. [138] proposed a multicontext deep
learning framework, which utilizes a unified learning
framework to model global and local context jointly with
the aid of superpixel segmentation. To predict saliency in
videos, Bak er al. [139] fused two static saliency models,
namely, spatial stream net and temporal stream net, into a
two-stream framework with a novel empirically grounded
data augmentation technique.

Complementary information from semantic segmentation
and context modeling is beneficial. To learn internal represen-
tations of saliency efficiently, He et al. [140] proposed a novel
superpixelwise CNN approach called SuperCNN, in which
salient object detection is formulated as a binary labeling
problem. Based on a fully CNN, Li et al. [141] proposed a
multitask deep saliency model, in which intrinsic correlations
between saliency detection and semantic segmentation are set
up. However, due to the conv layers with large receptive
fields and pooling layers, blurry object boundaries and coarse
saliency maps are produced. Tang and Wu [142] proposed
a novel saliency detection framework (CRPSD) [142], which
combines the region-level saliency estimation and pixel-level
saliency prediction together with three closely related CNNs.
Li and Yu [143]proposed a deep contrast network to combine
segmentwise spatial pooling and pixel-level fully convolutional
streams [143].

The proper integration of multiscale feature maps is also
of significance for improving detection performance. Based
on Fast R-CNN, Wang et al. [144] proposed the RegionNet
by performing salient object detection with end-to-end edge
preserving and multiscale contextual modeling. Liu et al. [28]
proposed a multiresolution CNN (Mr-CNN) to predict eye fix-
ations, which is achieved by learning both BU visual saliency
and TD visual factors from raw image data simultaneously.
Cornia et al. [145] proposed an architecture that combines fea-
tures extracted at different levels of the CNN. Li and Yu [146]
proposed a multiscale deep CNN framework to extract three
scales of deep contrast features, namely, the mean-subtracted
region, the bounding box of its immediate neighboring regions,
and the masked entire image, from each candidate region.

It is efficient and accurate to train a direct pixelwise
CNN architecture to predict salient objects with the aids
of recurrent neural networks and deconvolution networks.
Pan et al. [147] formulated saliency prediction as a mini-
mization optimization on the Euclidean distance between the
predicted saliency map and the ground truth and proposed
two kinds of architectures: a shallow one trained from scratch

and a deeper one adapted from a deconvoluted VGG net-
work. Asconvolutional-deconvolution networks are not expert
in recognizing objects of multiple scales, Kuen er al. [148]
proposed a recurrent attentional convolutional-deconvolution
network with several spatial transformer and recurrent network
units to conquer this problem. To fuse local, global, and
contextual information of salient objects, Tang et al. [149]
developed a deeply supervised recurrent CNN to perform a
full image-to-image saliency detection.

B. Experimental Evaluation

Four representative data sets, including Evaluation on Com-
plex Scene Saliency Dataset (ECSSD) [156], HKU-IS [146],
PASCALS [157], and SOD [158], are used to evaluate several
state-of-the-art methods. ECSSD consists of 1000 structurally
complex but semantically meaningful natural images. HKU-IS
is a large-scale data set containing over 4000 challenging
images. Most of these images have more than one salient
object and own low contrast. PASCALS is a subset chosen
from the validation set of PASCAL VOC 2010 segmentation
data set and is composed of 850 natural images. The SOD data
set possesses 300 images containing multiple salient objects.
The training and validation sets for different data sets are kept
the same as those in [152].

Two standard metrics, namely, F-measure and the mean
absolute error (MAE), are utilized to evaluate the quality of a
saliency map. Given precision and recall values precomputed
on the union of generated binary mask B and ground truth Z,
F-measure is defined as follows:

Fo— (1 4 f?)Presion x Recall
h= B?Presion + Recall

(N

where f? is set to 0.3 in order to stress the importance of the
precision value.
The MAE score is computed with the following equation:

1 H W ~ .
MAE= —— > > 18G. =26l ®

i=1 j=1

where Z and § represent the ground truth and the continuous
saliency map, respectively. W and H are the width and
height of the salient area, respectively. This score stresses
the importance of successfully detected salient objects over
detected nonsalient pixels [159].

The following approaches are evaluated: contextual hyper-
graph modeling (CHM) [150], RC [151], discriminative
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regional feature integration (DRFI) [152], MC [138], mul-
tiscale deep CNN features (MDF) [146], local estimation
and global search (LEGS) [136], DSR [149], multi-task deep
neural network [141], CRPSD [142], deep contrast learn-
ing (DCL) [143], encoded low level distance (ELD) [153],
nonlocal deep features (NLDF) [154], and deep supervision
with short connections (DSSC) [155]. Among these meth-
ods, CHM, RC, and DRFI are classical ones with the best
performance [159], while the other methods are all associated
with CNN. F-measure and MAE scores are given in Table VI.

From Table VI, we can find that CNN-based methods
perform better than classic methods. MC and MDF combine
the information from local and global context to reach a more
accurate saliency. ELD refers to low-level handcrafted features
for complementary information. LEGS adopts generic region
proposals to provide initial salient regions, which may be
insufficient for salient detection. DSR and MT act in different
ways by introducing a recurrent network and semantic seg-
mentation, which provide insights for future improvements.
CRPSD, DCL, NLDF, and DSSC are all based on multiscale
representations and superpixel segmentation, which provide
robust salient regions and smooth boundaries. DCL, NLDF,
and DSSC perform the best on these four data sets. DSSC
earns the best performance by modeling scale-to-scale short
connections.

Overall, as CNN mainly provides salient information in
local regions, most of the CNN-based methods need to model
visual saliency along region boundaries with the aid of super-
pixel segmentation. Meanwhile, the extraction of multiscale
deep CNN features is of significance for measuring local
conspicuity. Finally, it is necessary to strengthen local con-
nections between different CNN layers as well as to utilize
complementary information from local and global context.

V. FACE DETECTION

Face detection is essential to many face applications
and acts as an important preprocessing procedure to
face recognition [160]-[162], face synthesis [163], [164], and
facial expression analysis [165]. Different from generic object
detection, this task is to recognize and locate face regions
covering a very large range of scales (30-300 pts versus
10-1000 pts). At the same time, faces have their unique object
structural configurations (e.g., the distribution of different
face parts) and characteristics (e.g., skin color). All these
differences lead to special attention to this task. However, large
visual variations of faces, such as occlusions, pose variations,
and illumination changes, impose great challenges for this task
in real applications.

The most famous face detector proposed by Viola and
Jones [166] trains cascaded classifiers with Haar-like features
and AdaBoost, achieving good performance with real-time
efficiency. However, this detector may degrade significantly
in real-world applications due to larger visual variations of
human faces. Different from this cascade structure, Felzen-
szwalb et al. [24] proposed a deformable part model (DPM)
for face detection. However, for these traditional face detection
methods, high computational expenses and large quantities
of annotations are required to achieve a reasonable result.
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(b)

Fig. 11. ROC curves of state-of-the-art methods on FDDB. (a) Discrete ROC
curves. (b) Continuous ROC curves.

In addition, their performance is greatly restricted by manually
designed features and shallow architecture.

A. Deep Learning in Face Detection

Recently, some CNN-based face detection approaches have
been proposed [167]-[169]. As less accurate localization
results from independent regressions of object coordinates,
Yu et al. [167] proposed a novel IoU loss function for pre-
dicting the four bounds of box jointly. Farfade er al. [168]
proposed a deep dense face detector (DDFD) to conduct
multiview face detection, which is able to detect faces in
a wide range of orientations without the requirement of
pose/landmark annotations. Yang et al. [169] proposed a novel
deep learning-based face detection framework, which collects
the responses from local facial parts (e.g., eyes, nose, and
mouths) to address face detection under severe occlusions
and unconstrained pose variations. Yang et al. [170] proposed
a scale-friendly detection network named ScaleFace, which
splits a large range of target scales into smaller subranges.
Different specialized subnetworks are constructed on these
subscales and combined into a single one to conduct end-to-
end optimization. Hao ef al. [171] designed an efficient CNN
to predict the scale distribution histogram of the faces and took
this histogram to guide the zoomed-in view and zoomed-out
view of the image. Since the faces are approximately in
uniform scale after zoom, compared with other state-of-the-art
baselines, better performance is achieved with a less computa-
tion cost. In addition, some generic detection frameworks are
extended to face detection with different modifications, e.g.,
Faster R-CNN [30], [172], [173].

Some authors trained CNNs with other complementary
tasks, such as 3-D modeling and face landmarks, in a multitask
learning manner. Huang et al. [174] proposed a unified end-to-
end FCN framework called DenseBox to jointly conduct face
detection and landmark localization. Li et al. [175] proposed
a multitask discriminative learning framework that integrates
a ConvNet with a fixed 3-D mean face model in an end-to-end
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manner. In the framework, two issues are addressed to trans-
fer from generic object detection to face detection, namely,
eliminating predefined anchor boxes by a 3-D mean face
model and replacing Rol pooling layer with a configuration
pooling layer. Zhang et al. [176] proposed a deep cascaded
multitask framework named multitask cascaded convolutional
networks (MTCNN) which exploits the inherent correlations
between face detection and alignment in the unconstrained
environment to boost up detection performance in a coarse-
to-fine manner.

Reducing computational expenses is of necessity in real
applications. To achieve real-time detection on the mobile plat-
form, Kalinovskii and Spitsyn [177] proposed a new solution
of frontal face detection based on compact CNN cascades. This
method takes a cascade of three simple CNNs to generate,
classify, and refine candidate object positions progressively.
To reduce the effects of large pose variations, Chen et al. [32]
proposed a cascaded CNN denoted by supervised transformer
network. This network takes a multitask RPN to predict
candidate face regions along with associated facial landmarks
simultaneously and adopts a generic R-CNN to verify the
existence of valid faces. Yang and Nevatia [8] proposed a
three-stage cascade structure based on FCNs, while in each
stage, a multiscale FCN is utilized to refine the positions of
possible faces. Qin er al. [178] proposed a unified framework
that achieves better results with the complementary informa-
tion from different jointly trained CNNs.

B. Experimental Evaluation

The FDDB [179] data set has a total of 2845 pictures in
which 5171 faces are annotated with an elliptical shape. Two
types of evaluations are used: the discrete score and continuous
score. By varying the threshold of the decision rule, the
receiver operating characteristic (ROC) curve for the discrete
scores can reflect the dependence of the detected face fractions
on the number of false alarms. Compared with annotations,
any detection with an IoU ratio exceeding 0.5 is treated as
positive. Each annotation is only associated with one detection.
The ROC curve for the continuous scores is the reflection of
face localization quality.

The evaluated models cover DDFD [168], Cascade-CNN
[180], aggregate channel features (ACF)-multiscale [181],
Pico [182], Head-Hunter [183], Joint Cascade [31], SURF-
multiview [184], Viola—Jones [166], NPDFace [185],
Faceness [169], convolutional channel features (CCF) [186],
MTCNN [176], Conv3-D [175], Hyperface [187],
UnitBox [167], locally decorrelated channel
features (LDCF+) [S2], DeeplR [173], hybrid-resolution
model with elliptical regressor (HR-ER) [188], Face-R-
CNN [172], and ScaleFace [170]. ACF-multiscale, Pico,
HeadHunter, Joint Cascade, SURF-multiview, Viola-Jones,
NPDFace, and LDCF+ are built on classic hand-crafted
features while the rest methods are based on deep CNN
features. The ROC curves are shown in Fig. 11.

In Fig. 11(a), in spite of relatively competitive results pro-
duced by LDCF+, it can be observed that most of the classic
methods perform with similar results and are outperformed by
CNN-based methods by a significant margin. In Fig. 11(b),
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it can be observed that most of the CNN-based methods earn
similar true positive rates between 60% and 70% while DeepIR
and HR-ER perform much better than them. Among classic
methods, Joint Cascade is still competitive. As earlier works,
DDFD and CCF directly make use of generated feature maps
and obtain relatively poor results. CascadeCNN builds cas-
caded CNNSs to locate face regions, which is efficient but inac-
curate. Faceness combines the decisions from different part
detectors, resulting in precise face localizations while being
time-consuming. The outstanding performance of MTCNN,
Conv3-D, and Hyperface proves the effectiveness of multitask
learning. HR-ER and ScaleFace adaptively detect faces of
different scales and make a balance between accuracy and
efficiency. DeeplR and Face-R-CNN are two extensions of the
Faster R-CNN architecture to face detection, which validate
the significance and effectiveness of Faster R-CNN. Unitbox
provides an alternative choice for performance improvements
by carefully designing optimization loss.

From these results, we can draw the conclusion that
CNN-based methods are in the leading position. The perfor-
mance can be improved by the following strategies: designing
novel optimization loss, modifying generic detection pipelines,
building meaningful network cascades, adapting scale-aware
detection, and learning multitask shared CNN features.

VI. PEDESTRIAN DETECTION

Recently, pedestrian detection has been intensively
studied, which has a close relationship to pedestrian
tracking [189], [190], person reidentification [191], [192],
and robot navigation [193], [194]. Prior to the recent
progress in deep CNN (DCNN)-based methods [195], [196],
some researchers combined boosted decision forests
with  hand-crafted features to  obtain  pedestrian
detectors [197]-[199]. At the same time, to explicitly model
the deformation and occlusion, part-based models [200] and
explicit occlusion handling [201], [202] are of concern.

As there are many pedestrian instances of small sizes in typ-
ical scenarios of pedestrian detection (e.g., automatic driving
and intelligent surveillance), the application of Rol pooling
layer in generic object detection pipeline may result in “plain”
features due to collapsing bins. In the meantime, the main
source of false predictions in pedestrian detection is the
confusion of hard background instances, which is in contrast
to the interference from multiple categories in generic object
detection. As a result, different configurations and components
are required to accomplish accurate pedestrian detection.

A. Deep Learning in Pedestrian Detection

Although DCNNs have obtained excellent performance on
generic object detection [16], [72], none of these approaches
have achieved better results than the best hand-crafted feature-
based method [198] for a long time, even when part-based
information and occlusion handling are incorporated [202].
Thereby, some studies have been conducted to analyze
the reasons. Zhang et al. [203] attempted to adapt generic
Faster R-CNN [17] to pedestrian detection. They modified the
downstream classifier by adding boosted forests to shared,
high-resolution conv feature maps and taking an RPN to han-
dle small instances and hard negative examples. To deal with
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complex occlusions existing in pedestrian images, inspired
by DPM [24], Tian et al. [204] proposed a deep learning
framework called DeepParts, which makes decisions based
on an ensemble of extensive part detectors. DeepParts has
advantages in dealing with weakly labeled data, low IoU
positive proposals, and partial occlusion.

Other researchers also tried to combine complementary
information from multiple data sources. CompACT-Deep
adopts a complexity-aware cascade to combine hand-crafted
features and fine-tuned DCNNSs [195]. Based on Faster
R-CNN, Liu et al. [205] proposed multispectral DNNs for
pedestrian detection to combine complementary information
from color and thermal images. Tian et al. [206] proposed
a task-assistant CNN to jointly learn multiple tasks with
multiple data sources and to combine pedestrian attributes
with semantic scene attributes together. Du et al. [207] pro-
posed a DNN fusion architecture for fast and robust pedes-
trian detection. Based on the candidate BBs generated with
SSD detectors [71], multiple binary classifiers are processed
parallelly to conduct soft-rejection-based network fusion by
consulting their aggregated degree of confidences.

However, most of these approaches are much more sophisti-
cated than the standard R-CNN framework. CompACT-Deep
consists of a variety of hand-crafted features, a small CNN
model, and a large VGG16 model [195]. DeepParts contains
45 fine-tuned DCNN models, and a set of strategies, includ-
ing bounding box shifting handling and part selection, are
required to arrive at the reported results [204]. Therefore,
the modification and simplification are of significance to
reduce the burden on both software and hardware to satisfy
real-time detection demand. Tome et al. [59] proposed a novel
solution to adapt generic object detection pipeline to pedestrian
detection by optimizing most of its stages. Hu er al. [208]
trained an ensemble of boosted decision models by reusing
the conv feature maps, and a further improvement was gained
with simple pixel labeling and additional complementary
hand-crafted features. Tome ez al. [209] proposed a reduced
memory region-based deep CNN architecture, which fuses
regional responses from both ACF detectors and SVM classi-
fiers into R-CNN. Ribeiro et al. [33] addressed the problem of
human-aware navigation and proposed a vision-based person
tracking system guided by multiple camera sensors.

B. Experimental Evaluation

The evaluation is conducted on the most popular Caltech
Pedestrian data set [3]. The data set was collected from the
videos of a vehicle driving through an urban environment and
consists of 250000 frames with about 2300 unique pedestrians
and 350000 annotated BBs. Three kinds of labels, namely,
“Person (clear identifications),” “Person? (unclear identifica-
tions),” and “People (large group of individuals),” are assigned
to different BBs. The performance is measured with the
log-average miss rate (L-AMR) which is computed evenly
spaced in log-space in the range 1072 to 1 by averaging miss
rate at the rate of nine false positives per image [3]. According
to the differences in the height and visible part of the BBs,
a total of nine popular settings are adopted to evaluate different
properties of these models. Details of these settings are as
in [3].
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Evaluated methods include Checkerboards+ [198],
LDCF++ [S2], SCF+AlexNet [210], SA-FastRCNN [211],
MS-CNN [105], DeepParts [204], CompACT-Deep [195],
RPN+BF [203], and F-DNN+4SS [207]. The first two
methods are based on hand-crafted features while the rest
ones rely on deep CNN features. All results are exhibited
in Table VII. From this table, we observe that different
from other tasks, classic handcrafted features can still earn
competitive results with boosted decision forests [203],
ACF [197], and HOG+LUV channels [S2]. As an early
attempt to adapt CNN to pedestrian detection, the features
generated by SCF+AlexNet are not so discriminant and
produce relatively poor results. Based on multiple CNNs,
DeepParts and CompACT-Deep accomplish detection tasks via
different strategies, namely, local part integration and cascade
network. The responses from different local part detectors
make DeepParts robust to partial occlusions. However, due
to complexity, it is too time-consuming to achieve real-time
detection. The multiscale representation of MS-CNN improves
the accuracy of pedestrian locations. SA-FastRCNN extends
Fast R-CNN to automatically detect pedestrians according
to their different scales, which has trouble when there are
partial occlusions. RPN+BF combines the detectors produced
by Faster R-CNN with boosting decision forest to accurately
locate different pedestrians. F-DNN+-SS, which is composed
of multiple parallel classifiers with soft rejections, performs
the best followed by RPN+BF, SA-FastRCNN, and MS-CNN.

In short, CNN-based methods can provide more accu-
rate candidate boxes and multilevel semantic information for
identifying and locating pedestrians. Meanwhile, handcrafted
features are complementary and can be combined with CNN
to achieve better results. The improvements over existing CNN
methods can be obtained by carefully designing the framework
and classifiers, extracting multiscale and part-based semantic
information and searching for complementary information
from other related tasks, such as segmentation.

VII. PROMISING FUTURE DIRECTIONS AND TASKS

In spite of rapid development and achieved promising
progress of object detection, there are still many open issues
for the future work.

The first one is small object detection such as occurring
in COCO data set and in face detection task. To improve
localization accuracy on small objects under partial occlusions,
it is necessary to modify network architectures from the
following aspects.

1) Multitask  Joint  Optimization —and  Multimodal
Information Fusion: Due to the correlations between
different tasks within and outside object detection,
multitask joint optimization has already been studied
by many researchers [16], [17]. However, apart from
the tasks mentioned in Section III-AS, it is desirable to
think over the characteristics of different subtasks of
object detection (e.g., superpixel semantic segmentation
in salient object detection) and extend multitask
optimization to other applications such as instance
segmentation [66], multiobject tracking [202], and
multiperson pose estimation [S4]. In addition, given
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2)

3)

TABLE VII

DETAILED BREAKDOWN PERFORMANCE COMPARISONS OF STATE-OF-THE-ART MODELS ON CALTECH PEDESTRIAN DATA SET.
ALL NUMBERS ARE REPORTED IN L-AMR

17

Method | Reasonable | All | Far | Medium | Near | none | partial | heavy
Checkerboards+ [198] 17.1 68.4 100 58.3 5.1 15.6 314 78.4
LDCF++ [S2] 15.2 67.1 100 584 5.4 133 333 76.2
SCF+AlexNet [210] 23.3 70.3 100 62.3 10.2 20.0 48.5 74.7
SA-FastRCNN [211] 9.7 62.6 100 51.8 0 7.7 24.8 64.3
MS-CNN [105] 10.0 61.0 97.2 49.1 2.6 8.2 19.2 60.0
DeepParts [204] 11.9 64.8 100 56.4 4.8 10.6 19.9 60.4
CompACT-Deep [195] 11.8 64.4 100 53.2 4.0 9.6 25.1 65.8
RPN+BF [203] 9.6 64.7 100 53.9 2.3 7.7 242 74.2
F-DNN+SS [207] 8.2 50.3 71.5 33.2 2.8 6.7 15.1 53.4

a specific application, the information from different
modalities, such as text [212], thermal data [205], and
images [65], can be fused together to achieve a more
discriminant network.

Scale Adaption: Objects usually exist in different scales,
which are more apparent in face detection and pedes-
trian detection. To increase the robustness to scale
changes, it is demanded to train scale-invariant, mul-
tiscale or scale-adaptive detectors. For scale-invariant
detectors, more powerful backbone architectures (e.g.,
ResNext [123]), negative sample mining [113], reverse
connection [213], and subcategory modeling [60] are all
beneficial. For multiscale detectors, both the FPN [66]
that produces multiscale feature maps and the generative
adversarial network [214] that narrows representation
differences between small objects and the large ones
with a low-cost architecture provide insights into gen-
erating meaningful feature pyramid. For scale-adaptive
detectors, it is useful to combine knowledge graph [215],
attentional mechanism [216], cascade network [180],
and scale distribution estimation [171] to detect objects
adaptively.

Spatial Correlations and Contextual Modeling: Spatial
distribution plays an important role in object detec-
tion. Therefore, region proposal generation and grid
regression are taken to obtain probable object loca-
tions. However, the correlations between multiple pro-
posals and object categories are ignored. In addition,
the global structure information is abandoned by the
position-sensitive score maps in R-FCN. To solve these
problems, we can refer to diverse subset selection [217]
and sequential reasoning tasks [218] for possible solu-
tions. It is also meaningful to mask salient parts and
couple them with the global structure in a joint-learning
manner [219].

The second one is to release the burden on manual labor
and accomplish real-time object detection, with the emergence
of the large-scale image and video data. The following three
aspects can be taken into account.

1y

Cascade Network: In a cascade network, a cas-
cade of detectors is built in different stages or
layers [180], [220]. Easily distinguishable examples are
rejected at shallow layers so that features and classifiers
at later stages can handle more difficult samples with
the aid of the decisions from previous stages. However,
current cascades are built in a greedy manner, where

2)

3)

The
2-D object

previous stages in cascade are fixed when training a new
stage. Therefore, the optimizations of different CNNs
are isolated, which stresses the necessity of end-to-end
optimization for CNN cascade. At the same time, it is
also a matter of concern to build contextual associated
cascade networks with existing layers.

Unsupervised and Weakly Supervised Learning: It is
very time-consuming to manually draw large quantities
of BBs. To release this burden, semantic prior [55],
unsupervised object discovery [221], multiple instance
learning [222], and DNN prediction [47] can be inte-
grated to make the best use of image-level supervision
to assign object category tags to corresponding object
regions and refine object boundaries. Furthermore,
weakly annotations (e.g., center-click annotations [223])
are also helpful for achieving high-quality detectors with
modest annotation efforts, especially aided by the mobile
platform.

Network Optimization: Given specific applications and
platforms, it is significant to make a balance among
speed, memory, and accuracy by selecting an optimal
detection architecture [116], [224]. However, despite
that detection accuracy is reduced, it is more mean-
ingful to learn compact models with a fewer number
of parameters [209]. This situation can be relieved by
introducing better pretraining schemes [225], knowledge
distillation [226], and hint learning [227]. DSOD also
provides a promising guideline to train from scratch
to bridge the gap between different image sources and
tasks [74].

to extend
to adapt

third one is
detection

typical methods for
3-D object detection

and video object detection, with the requirements from
autonomous driving, intelligent transportation, and intelligent
surveillance.

1y

3-D Object Detection: With the applications of 3-D
sensors (e.g., Light Detection and Ranging and cam-
era), additional depth information can be utilized to
better understand the images in 2-D and extend the
image-level knowledge to the real world. However, sel-
dom of these 3-D-aware techniques aim to place correct
3-D BBs around detected objects. To achieve better
bounding results, multiview representation [181] and
3-D proposal network [228] may provide some guide-
lines to encode depth information with the aid of inertial
sensors (accelerometer and gyrometer) [229].
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2) Video Object Detection: Temporal information across

different frames plays an important role in under-
standing the behaviors of different objects. However,
the accuracy suffers from degenerated object appear-
ances (e.g., motion blur and video defocus) in videos
and the network is usually not trained end to end. To this
end, spatiotemporal tubelets [230], optical flow [199],
and LSTM [107] should be considered to fundamentally
model object associations between consecutive frames.

VIII. CONCLUSION

Due to its powerful learning ability and advantages in
dealing with occlusion, scale transformation, and background
switches, deep learning-based object detection has been a
research hotspot in recent years. This paper provides a detailed
review on deep learning-based object detection frameworks
that handle different subproblems, such as occlusion, clutter,
and low resolution, with different degrees of modifications
on R-CNN. The review starts on generic object detection
pipelines which provide base architectures for other related
tasks. Then, three other common tasks, namely, salient object
detection, face detection, and pedestrian detection, are also
briefly reviewed. Finally, we propose several promising future
directions to gain a thorough understanding of the object detec-
tion landscape. This review is also meaningful for the develop-
ments in neural networks and related learning systems, which
provides valuable insights and guidelines for future progress.
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